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A Lagrangian finite-volume Godunov scheme is extended to simulate two-
dimensional solids in planar geometry. The scheme employs an elastic—perfectly
plastic material model, implemented using the method of radial return, and either
the ‘stiffened’ gas or Osborne equation of state to describe the material. The prob-
lem of mesh entanglement, common to conventional two-dimensional Lagrangian
schemes, is avoided by utilising the free-Lagrange Method. The Lagrangian formu-
lation enables features convecting at the local velocity, such as material interfaces, to
be resolved with minimal numerical dissipation. The governing equations are split
into separate subproblems and solved sequentially in time using a time-operator
split procedure. Local Riemann problems are solved using a two-shock approxi-
mate Riemann solver, and piecewise-linear data reconstruction is employed using a
MUSCL-based approach to improve spatial accuracy. To illustrate the effectiveness
of the technique, numerical simulations are presented and compared with results
from commercial fixed-connectivity Lagrangian and smooth particle hydrodynam-
ics solvers (AUTODYN-2D). The simulations comprise the low-velocity impact of
an aluminium projectile on a semi-infinite target, the collapse of a thick-walled
beryllium cylinder, and the high-velocity impact of cylindrical aluminium and steel
projectiles on a thin aluminium target. The analytical solution for the collapse of a
thick-walled cylinder is also presented for comparisors 2002 Eisevier Science

Key Words:free-Lagrange method; elastic—plastic solids; numerical simulation;
Godunov method; time-operator splitting.

1. INTRODUCTION

This paper describes a new free-Lagrange numerical sch¥nwl(n—ER that has
been developed in order to simulate high-rate elastic—plastic deformation of materials v
strength (i.e., the ability to withstand shear distortion). Traditionally, simulations such
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FREE-LAGRANGE AUGMENTED GODUNOV METHOD 129

armour penetration and hypervelocity impact have been performed using space-cer
finite-difference or finite-element schemes requiring artificial viscosity to control nume
cal oscillations. Large deformation problems have typically required Eulerian or arbitre
Lagrangian Eulerian (ALE) schemes incorporating some additional algorithm for tracki
material interfaces, or complex interaction or slideline logic, respectively. Smooth parti
hydrodynamics (SPH) schemes offer an alternative, grid-free method but are relatively
fusive. It has therefore been the objective of this work to investigate an alternative, ft
Lagrangian, finite-volume approach for this type of simulation. By formulating the go
erning equations in the Lagrangian reference frame, the need to evaluate convective fl
is avoided, thus eliminating a major source of numerical diffusion. As a result, featul
convecting at the local material velocity, such as material interfaces, are resolved sha
at all times without recourse to interface tracking. The tangling of conventional fixe
connectivity Lagrangian meshes is here avoided by utilising the free-Lagrange method
Frittset al.[12]), in which the computational mesh maintains fully Lagrangian motion, bt
the mesh connectivity is allowed to evolve in order to accommodate large material dis
tions. A cell-centred finite-volume formulation is used which enables the implementati
of a Godunov-type solver in order to solve the hyperbolic component of the system.

High-order Godunov-type schemes have become commonplace for unsteady, invis
compressible gas dynamic calculations since they provide excellent shock-capturing ¢
bility combined with relatively low numerical diffusion. However, the application of sucl
methods to materials with strength has been rare, due perhaps to the increased comp
of the Riemann problem resulting from the required material models and equations of st
For example, Tang and Ting [34] found that, in hyperelastic materials, the Riemann sc
tion could contain composite nonlinear wave families in which a shock is in contact witt
rarefaction of the same family. Wave systems consisting of two, three, and even four w
families instead of the usual three, where each individual family may be a simple rarefact
fan, a shock wave, or a composite wave, were also found to be common. Despite this
creased complexity, the Riemann problem for the longitudinal and transverse motion ir
elastic string has been solved by Keyfitz and Kranzer [19], and for the longitudinal moti
in a strain-softening material by Shearer [30]. Also, Lin and Ballmann [20] present an int
esting study detailing the construction of a second-order Godunov method for the numel
computation of elastic—plastic waves in thin-walled tubes. Trangenstein and Pember [
when investigating the influence of plasticity, found that the analytical solution of tt
Riemann problem for the Antman—Szymczak model (a simple model describing longitu
nal motion in an elastic—plastic bar which ignores body forces, transverse displacements
thermal effects) reveals a total of 21 different wave systems, compared to the possible 1
the Euler equations. This situation would be complicated still further if tensile failure were
be included. Using this experience, and motivated by the work of Liu [21] and Wendroff [4-
Trangenstein and Colella [37] construct an extension of a second-order Godunov me
to enable modelling of finite deformation in elastic—plastic solids. More recently, Mille
and Puckett [22], and Tang and Sotiropoulos [33], discuss high-order Godunov method:
multiple condensed phases described using a Mier€sen equation of state and linear
shock Hugoniot, and a hydro—elasto—plastic solid model, respectively.

Another high-order Godunov scheme recently developed for the simulation of elast
plastic solids is due to Miller and Colella [23]. Utilising the deformation gradient, Mille
and Colella [23] are able to obtain an Eulerian formulation of the governing equations
solid mechanics as a first-order system of hyperbolic partial differential equations. Si



130 HOWELL AND BALL

the formulation introduces source terms, a predictor—corrector scheme is developed to <
the system. First a sophisticated second-order Godunov method provides a solution tf
then modified to include the influence of the source terms. The Miller and Colella [2
scheme begins by forming van Leer limited gradients of the cell-centred variables, namr
density, velocity, specific internal energy, the inverse of the deformation gradient, the pla
deformation tensor, awork hardening parameter, and the components of the Cauchy stre
Riemann problem is then formed at the edge of a cell from the exact solution of the lineari
equations. The Riemann problem is approximated using the eigenvectors of the coeffici
of the linearised one-dimensional equations and preliminary conservative updates of
cell-centred variables are obtained. The final solution at time level 1) is then obtained

with modification of the preliminary updates due to the presence of the source terms.

The present work differs from these previous studies in that operator splitting is usec
order to avoid the additional complexities associated with inclusion of material strength
the Riemann problem. Since the total stress tensor conveniently decomposes into a d
toric stress tensor, responsible for the strength of the material, and an isotropic hydros
pressure, the system of governing equations can readily be solved sequentially in time.
technique employed here is similar to the schemes discussed in Yanenko’s method of 1
tional steps [46], which are often used in the solution of the Navier—Stokes equations (
Armfield and Street [1]). Similar techniques, referred to as time-operator or convectic
diffusion split schemes, have been successfully employed to extend Godunov-type mett
to solve viscous flows (see Toro and Brown [35] and Bagtiead. [4]). The authors believe
such an approach provides a sound foundation for the inclusion of more sophistice
material models. The utilisation of a free-Lagrange mesh also distinguishes the pre:
study from traditional Lagrangian schemes such as presented by Caretrang, 9].
The free-Lagrange mesh and cell-centred formulation also allows for general topolo
and arbitrary and automatically updated connectivity, without the problems of hourglass
common to other Lagrangian staggered-mesh schemes (see Caramana [6] and Care
and Shashkov [8]).

The remainder of this paper is arranged thus: In the next section the numerical sche
the development of which has been the main thrust of this work, is presented. First
governing equations are introduced, followed by a discussion of the decomposition of
total stress tensor, the elastic—perfectly plastic model, and the equations of state empic
The principle of time-operator splitting is discussed in Section 3.2 and the separate nume
operators are described in the remainder of Section 3. In Section 4 a selection of calculat
are performed using our method, and these are compared to analytical solutions and re
obtained using alternative techniques. Finally, in Section 5 we present our conclusions

2. GOVERNING EQUATIONS

2.1. Equations of Motions

The governing equations for a continuous two-dimensional, homogeneous, honheat «
ducting media are, in integral form,

0 n
2 Udv+7f A.-FdS=0, &)
it Jvw St
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whereV (t) is a time-dependent control volume enclosed by the boun8ény U is the
vector of conserved variables, aRds the flux vector. In the Lagrangian reference frame
these vectors are

1 —u
U=|pu|l and F=| —-ao |, 2
PE -u-o

wherep is the densityE is the total specific energye(= e+ (u - u)/2), e is the specific
internal energyg is the total stress tensor, ands the vector velocity. (1) and (2) provide
statements for the conservation of volume, momentum, and energy. In the Lagrangian r
ence frame, since no mass is exchanged between individual control volumes, the contir
equation in its usual form becomes redundant and is therefore replaced with an expres
for the conservation of volume. For a material exhibiting strength the total stress can
decomposed into a hydrostatic, isotropic presguend a deviatoric stress tensprsuch
that

wherel is the unit tensor angdis the deviatoric stress tensor constructed thus—

_ [ sy 4
S [sxy sy} )

wheres,, s, are the direct stresses agg is the shear stress. Such a decomposition of th
total stress tensor leads to a convenient formulation of the governing equations,

el A A
- U dV + % n- thdrod S+ % n- FstrendS: O, (5)
V() St S(t)

ot
whereFnyqro andFsyen are fluxes dependent on the hydrostatic pressure and on the stat
deviatoric stress in the material, respectively. These fluxes are

—u 0
thdro: pl, and Fstren = =S |. (6)

up u-s

Alternatively, utilising operator splitting, (5) becomes the two separate subproblems

0
at Jvw S
and
d ~ ~
— UdV—i—j{ fi- Fstrend S= 0. (8)
ot Jva S()

In the scheme developed here (7) and (8) are solved sequentially in time using a ti
operator splitting procedure to be described in Section 3; hersignifies an intermediate
value of the vector of conserved variables resulting from the solution of (7) alone. In or
to complete the description, a material model is required consisting of a constitutive mc
relating deformation to the state of deviatoric stress and an equation of state to quat
volumetric response.
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2.2. Elastic—Perfectly Plastic Solid

Using the generalised Hooke’s law [42], the relationship between stressl straine
for a continuous isotropic material in the principal directions (1, 2, 3) is

01 = A& + 2ue;
0y = A& + 2uuér (9)
03 = A& + 2u€s,

wheree = €; + €, + €3 is the volumetric strain and and . are the constants of Laan”
Furthermore,

vE

S arna oy 4o

n=G,

whereG is the shear modulug is Young’s modulus, andis Poisson’s ratio. Transforming
between principal stress space and an orthogonal Cartesigh ¢oordinate system and
simplifying to two dimensions, Hooke's law yields

ox = A& + 2uex
oy = A& + 2y (11)

Txy = MExy,

whereoy, oy, €x, €y are the normal stresses and strains irxthedy directions, respectively;
Txy @Ndexy are the shear stress and strain; areey + €y + €; = €1 + €2 + egsince the sum
of the longitudinal strain components is invariant with the transformation of the coordine
axes. Moreover, sineg = — P + & and the hydrostatic pressure can be defined as the me
of the three stressgs= —1/3(ox + oy + 03), the deviatoric stress can be represented

) ; 2 . )
& = 2uuéx — élzb(fx +éy +é), (12)

sincedy, = A&+ 2uéy, where the dot denotes a time derivative along a particle path. Tht
Hooke’s law can be written is terms of differential deviatoric stress,

& = 21(éx — v/ 3v)
8 = 2u(éy — v/3v) (13)
Sxy = Méxy7

where, from a consideration of continuity,

v . .

S =é&téyté (14)
wherev denotes the specific volume. Hence, (13) completely describes the state of deviat
stress for an elastic, two-dimensional, isotropic material as a function of its deformati

To model an elastic—plastic material an additional yield condition is required which defir
the material elastic limit and hence determines when plastic flow occurs. For the pre:s
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work, the von Mises yield condition has been employed, which can be written in terms
the principal stresses,

(01 — 02)% + (02 — 03)* + (03 — 01)* = 2(Y?)?, (15)

whereY? is the yield strength of the material in simple tension. With transformation int
the two-dimensional Cartesianr,(y) coordinate system, and using (3), the yield conditior
can be written as

2
S+ 25, = 2007 (16)

and it is this expression which is used to detect the onset of plastic flow. In the numer
scheme discussed in this work, once yield is detected the material is assumed to flow |
tically, resisting with a constant state of deviatoric stress; hence the term elastic—perfe
plastic. Finally, an equation of state relating the pressure to density and internal ener
required to complete the material model.

2.3. Equation of State

Two equations of state (EOS) have been employed in the present work; the ‘stiffel
gas’ EOS (see Tyndall [39], Harlow and Amsden [16], and Weixen [43]) and the quadre
Osborne EOS (see Riney [28]). The ‘stiffened gas’ EOS is a simplification of the mc
general Mie—Guineisen EOS. It provides a fair approximation to the behaviour of solid
providing that the departures from the reference density are slight, and has the form

p=Cci(p—po)+ (yo— Dpe, (17)

wherecy is the unshocked sound speedis a reference densitg,is the specific internal
energy, andy is the Grineisen gamma. The Osborne EOS has the form

an + an® + E'(b + bin + bon?) + E2(Co + C11)

Posb = E’—i—eo (18)
wheren = p/po — 1, E' = epg, and
_ ay, >0
A= { 2 0z (19)
a, n<0.

For the Osborne EOS, a minimum pressure is imposed such that the actual pressu
taken asp = max(Pmin, Post), Whereay, ay, &5, b, by, by, Co, €1, €, and pmin are material-

dependent parameters. All that remains in the constitutive model is to obtain an expres
for the local sound speed in the material for each EOS. Recalling that for all equation:

state,
ap p/ap
2_ (¥ L il 20
© <8p)e+pz<ae>p’ (20)
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therefore for the ‘stiffened gas’ EOS an expression for the sound speed can easily be de
thus:

02=C§+(yo—1){e+g]. (21)

And for the Osborne EOS, following some differentiation,

< ap) &y + 28y + E'(by + 2nb, + E'cy) 22
8IO e IOO(E/ + eO)
and
8p\ _ po(bo + bin + boy® + 2E'(Co + c1m) — p) 23)
de), E'+ e ‘

Thus, the material model for two-dimensional, elastic—perfectly plastic flow employed he
can be summarised as:

() decomposition of total stres{"x =—-p+5
oy =—p+sy,
$=2u(éx— 39
(ii) differential stress-strain relationshi 8, =2u(éy — %%) 28
Sxy = Méxy

(iii) von Mises yield conditiors? + s + 27, < 2(Y%)?,
(iv) flow rule—(perfectly plastic), and

(v) equation of state = p(p, €).

In the next section the numerical procedure for implementing the material model is ¢
cussed.

3. NUMERICAL SCHEME

3.1. General Details

The numerical scheme described in this work is based on the two-dimensional com
tational fluid dynamics (CFD) cod¢ucalm developed by Ball [2] for the solution of the
unsteady, compressible Euler equations on an unstructured Lagrangian, finite-volume rr

Atthe beginning of a calculation a two-dimensional domain is defined which is filled wit
computational ‘particles.” Associated with each particle is a material type, with appropric
material properties, the particle position §), and the material conditions at that position.
Based entirely on the particle positions, a Voronoi mesh is constructed which describe
unique tessellation of the domain using nonoverlapping polygonal cells. The Voronoi d
gram is the geometric dual of the more commonly known Delaunay triangulation [13, 2
Each cell encloses a single particle and contains the region on the computational p
closest to that particle, forming an associated material ‘packet. Mass exchange betw
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cells is forbidden, hence mass is conserved exactly at all times. The cells form the ¢
putational control volumes for the time integration of the governing equations. Once
material velocities, stored at the particle positions, are known at the new time level, tl
can be integrated in time to obtain the new particle positions. Hence the particles m
in a purely Lagrangian fashion and are a permanent feature of a calculation. In contr
the Voronoi mesh is ephemeral and may be reconstructed as often as desired, allowin
mesh connectivity to evolve freely in response to material deformation. In highly shear
materials the mesh may be reconstructed on every timestep or, in order to minimise (
time, the user may opt to reconstruct less frequently (perhaps every 5 timesteps). Du
intervening timesteps the existing mesh vertices are convected at the local material velo

Itisimportant to note at this juncture that itis a common misconception that reconstruct
of the computational mesh introduces diffusion or a loss of conservation. Since all flu:
are conservative, and mass exchange between cells is forbidden, the quantities of r
momentum, and energy are always conserved. Furthermore, the mesh reconstruction,
more common strategies such as ALE, involves no exchange of any property betw
individual cells; it merely constitutes an update of the local connectivity of the mesh a
the estimated locations of the cell boundaries.

3.2. Solution Procedure

Utilising atime-operator splitting procedure the integration of the solution from time lev
t" to t"+! consists of two sequential steps. In the first ‘hydrodynamic’ step, (7) is solve
thus advancing the vector of conserved variables to an intermediate time level utilisin
spatially second-order Godunov solver, i.e.,

u" - 0. (25)

Note that throughout this discussion the tilde overbgrrepresents intermediate solutions
resulting from the hydrodynamic step. During this initial step the material is assumed
be without strength and the state of stress at time [évbas no influence. In the second
‘deviatoric’ step the velocities from the intermediate solution are used to form veloci
strains in order to integrate the differential stress—strain relations (13) and hence obte
provisional update of the deviatoric stress tersoe.,

s'—

0|

(26)

where the plain overbar) indicates a provisional state resulting from the deviatoric stef
A definitive update of the conserved variables is then obtained using the provisional s
of deviatoric stress. Finally, time-centred velocity strains, formed from an average ¢
velocities at time level§ andt"*?, are used to obtain a definitive update of the cell-centre
deviatoric stress. This completes the timestep. The individual hydrodynamic and deviat
operators are discussed in detail in the following sections.

3.3. Hydrodynamic Operator

The time stepping of (7) differs very little from that of a comparable Euler solver. Fo
lowing Ball [2], the dependent variables at time leteland at the intermediate level are
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related thus—

~ 0 At
0= ;( un - 222 Z . FymsK) 27)

wherem is the control volume mas#t the timestep, and the subscripindicates thekth
side of the control volume. ThuBpyarq , S, andfy are the numerical flux, the side length,
and the outward pointing normal vector, respectively, forkteside of the computational
cell. The density update is obtained by applying volume conservation as

K -1
1 At
p=—=+—=> u&| ., (28)
(5 2us)
since
. K
V=V"+At> ;S (29)
k=1

whereV is the computational cell volume amgf is the normal velocity directed out of the
control volume. In (27), the numerical flux is required on each side of the computatior
cell and is formally found fronfrhygrq = AFg, where

ic 0 0 —u
A=|0 1 0, F=| p | (30)
0 0 Ui P

where the superscriptindicates wave-processed states at the cell boundary. These are
tained from the solution to the Riemann problem formed aktheontrol volume side. Note
that for a Lagrangian mesh, the cell boundary is coincident with the contact surface of
local Riemann problem, and hence the valuasgiop; are always determined at the contact
surface. This represents a significant simplification relative to Eulerian Godunov scher
in which the cell boundary may lie anywhere within the local wave system, depending uy
the local velocity and wave speeds.

The Riemann problem s an initial value problem with I€fe(nd right ¢ ) input states con-
structed from an interpolation of the cell-centred primitive variables assuming a piecewi
linear reconstruction within each cell. Required inputs are depgjtypressurep, ;, and
velocity normal to the cell face, . In order to ensure monotonicity, the gradients of primi-
tive variables are limited using a MUSCL-based approach (see Ball [2] for algebraic detai

In the present work, the two nonlinear waves present in the Riemann solution are b
assumed to be shock waves, and the Riemann solver of Dukowicz [11] has been empl
to calculate the wave-processed statesand p*. For a discussion of the two-shock ap-
proximation in the solution of the Riemann problem, see Toro [36]. The Dukowicz solv
is attractive for this type of application because it provides an approximate noniterat
Riemann solution for a broad class of materials characterised simply by the slope of
shock Hugoniot and the local sound speed. Though the exact solution for the stiffened
EOS is readily obtainable (see Cocelial.[10] and Plohr [26]), it is felt that this approxi-
mate solver provides scope for the incorporation of more realistic EOS in the future. |
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example, provided that an expression for the local sound speed can be obtained, there
reason why a more accurate version of the Mia#@iSen EOS cannot be employed (see
Gust [14] and Steinberet al. [31]).

Once (27) and (28) have been used to obtain the intermediate values of the conse
variables, the particle positions can be updated by integrating the intermediate vélocit
The intermediate conserved variable vectbrand the particle positions are now ready to
form the initial conditions for the deviatoric step.

3.4. Deviatoric Operator

The deviatoric operator can be conveniently divided into three distinct stages which
discussed in the following sections.

3.4.1. Stage 1: Predicted Cell-Centred Stress

The first stage of the deviatoric operator is to obtain a cell-centred prediction of the st
of deviatoric stress in each control volume based on the intermediate hydrodynamic up
U. Numerically, (13) can be integrated in time to give a predicted state of deviatoric stre

_ 1

s<=sQ+[2u<éx—§é>+ax}At

Sy =9+ |2ulé 1, Sy | At 31
S =95 €~ 3% + 9y (31)
Scy = Siy + [éxy + 8] At,

where the velocity gradients yield the strain rates thus (see Wang [42]):

ol . v
€Ex = &, Gy = @
_om op_an oF (32)
€ = — —, = — —
Yoy T oax ax = ay

Here the velocity is assumed to vary linearly within each computational cell. Estimates
the velocity gradients for a given cell are obtained by fitting a plane surface to the c
centred velocities of th& neighbouring cells, by least-squares, with the squared-error f
each neighbour weighted by the shared side leiSttNote that in (31), the additional
termssy, 8y, andsyy appear. During two-dimensional displacement a material element m
experience rotation in addition to distortion. Any rigid body rotation should not chan
the state of stress of the element but will constitute a transformation or redistribution
the deviatoric stress components. Thus, to ensure the stress—strain relationship rer
independent of rigid body motion, the additional rigid body correction terms are introduc
to allow for the coordinate transformation (see Wilkins [45]). The components of stress
an arbitrarily orientated orthogonal coordinate systeiny() may be related to those in the
(X, y) system by the transformation formulae

S¢ = % COS w + S, SiN w — Sy SiN 2w
Sy = S SiIlP w + Sy COS w + S,y SiN 2 (33)

1 :
Sey = 5(3( —Sy) SiN 2w + S,y COS 2v.
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Therefore, if a body is rotated through an anglie the (x, y) plane during the timestep, the
correction must be equal to the difference between the transformed stresses and the ori
stresses,

8x =S¢ — &
dy=8 -5 (34)
(Sxy = Sx/y/ - $<y-

The rotation angle is obtained from an estimate of the vorticity of the material given by

. 1rov ol
smw:é At

35
ax  ay (35)

Hence, at the end of Stage 1 a predicted state of deviatoric stress is available at pai
positions throughout the computational domain. Next, this state of stress must be alloy
to influence the conserved variables in each control volume.

3.4.2. Stage 2: Material Strength Flux Calculation

Inorderto determine the strength flBx.er, the state of deviatoric stress must be estimate:
at each cell face. Consider a given ‘target’ cell, with neighb&uss1..K (see Fig. 1). The
predicted deviatoric stresseg s, Sy obtained in Stage 1 are assumed to vary linearly
within each cell, with gradients obtained by least squares. The numerical flux dththe
face is constructed from an average of the predicted stress state linearly interpolated 1
the target (subscript) and neighbour particle positions and then orientated to the fa
coordinate system—see Fig. 1. The average stress states are obtained from

1 _ 1 _ 1
Skavg = E(ngT' +5)), Sp= §(§yET' +8,): Some = §(§xE>|fT +55), (36)

FIG. 1. Schematic illustrating the construction of edge-orientated normal and shear stressesfer the
neighbours,, is the normal deviatoric stress directed out of the ‘target’ cell, normal to the midpoint of the ce
face shared with thk = 1 neighbours;, is the shear stress acting tangential to the cell face, counterclockwis
around the target cel is the angle between the cell face and the posktiaxis.
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where the edge interpolated states (supersEfjptre formed

_ 95« 95« _ 05 954
oEl T T oEl k k
= AX —AVYrk, = AX —A

S =S¢ + % Tk + ay YTk S, =S« + ax kT + ay Vit
s = §y + 8§yT AXTk + Lgﬁ AYTk sEl = §y + 8§yk AXgT + 8—§ykAykT (37)
Sy Toax oy ’ S X oy
Sy, = +8§(—WAXTK+8§X—YTA)’T|< Sty = S +a§(—M‘AXkT+8§X—WAYkT

yr T ax ay T T Ok T Gy ay ’

where, for examples,ag‘—)j, "% are the Cartesian gradients of the predicted deviatoric stress

in the target andkth neighbour cells, respectively. Here the displacements from the targ
and thekth neighbour, to the face midpoint, are

AXTk = Xmp — XT,  AY1k = Ymp — YT

(38)
AXT = Xmp— Xks  AYkT = Ymp— Yk»
where(X, Y)mp, (X, Y)1, (X, Y)x are the positions of the face midpoint, the target particle
and thekth neighbour, respectively.
The interpolated stress components are transformed into components normal and pa
to the cell face, using

S = Syag COS Ok + St SIM O — Sy SIN D

avg
1,._

S, = > (Skasg — Syasg) SIN P + S¢y,,,COS P,

(39)

wheredy is the angle between the face and the poskiexis. Thus a definitive conservative
update of the conserved variables can be obtained from

n+1 ﬁ ¥ pnAt X A n
U = U-— > Ak Flen S |- (40)

where the strength flux is formally constructed as
0
_nXS‘mk + nyS[tk

_nySN'lk - nXSttk
—UgShn, — UttStt,

Fstren( = (41)

wheren, andny are thex- andy-wise components of the unit norm@| on thekth cell
face andy; anduy; are the velocities normal and tangential to the cell face. Hgmmes
from the Riemann solution calculated in the hydrodynamic operatougritbm a linear
interpolation of the local particle velocities. Note that on the current time step, mater
strength has no influence on the update of density, and hehde= 5. However, the
deviatoric operator does change the momentum and energy of the particle. These che
will modify the Riemann problem to be solved in tire+ 1)th timestep, which will in turn
influence the particle density. Having obtained a final update of the conserved variables
definitive update of the cell-centred deviatoric stress can now be computed.



140 HOWELL AND BALL

3.4.3. Stage 3: Definitive Cell-Centred Stress Update

The definitive cell-centred update of deviatoric stress is calculated in a fashion similal
that of the predicted stress (as described in Section 3.4.1), except that the strain rate:
rigid body corrections are now time-centred (supersdrptwith respect to the deviatoric
operator,

éTC) + aTC] At (42)

Xy Xy
where

éTC_ } @ N aun+1 éTCZE @ N avn+1
X 2\ 9x ox )7 Y 2\dy oy

1/90 oau"t? 1/9% 9"t
-TC

== i 43

Exy 2<ay+ ay )"Lz(axJr ax) (43)
| Bﬁ+8u“+1 L1 aﬁ+av“+l
e ===+ —— | — .

2\ 0x X 2\ 0y ay

Hallquist has shown [15] that the time-centred strain rate is preferred for large deformat
simulations, not only because it closely agrees with the true strain, but also because it av
the erroneous calculation of nonzero strain rates during rigid body rotation.

Before the state of deviatoric stress calculated from (42) is accepted as the final st
state it must be tested against the yield condition. The von Mises yield condition, (15)
used in this work and is implemented using the method of radial return due to Wilkins [4!
The steps to impose the yield condition are:

() Compare the state of deviatoric stress with the yield conditios? 4 35 + ZS)fy <
2/3(Y%)? then response is elastic and this is the final state of stres$Hfs] + 2s7, >
2/3(Y%)? then material has yielded and flow is plastic; move to step (ii).

(i) Radially rescale each stress component to lie on the yield surface by multiplying
the rescaling factor,

V273Y°

./S,%+s§+233y'

All that remains is to integrate the velocities to obtain new particle positions,

(44)

At At
XL — x4 7(un pumtly, oyl g ?(Un 4™, (45)

and to either convect or reconstruct the computational mesh for the beginning of the r
timestep.
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3.5. Treatment of Void Regions

Hydrocodes are often required to simulate problems, such as hypervelocity impact
which the region surrounding the deforming projectile and target is a void (vacuum),
may be approximated as such. The way in which the void region is represented may
a significant issue in the design of an appropriate numerical scheme. In addition, the
surface of the deforming material will typically display large distortions. Mesh entangleme
would normally terminate a fixed-connectivity Lagrangian calculation before large fri
surface distortions are reached. Problems also arise in ALE simulations if free surfaces '
up’ or turn back on themselves. Therefore, to simulate problems involving highly deformi
free surfaces, Eulerian or SPH methods have generally been used in the past. In an Eul
calculation, void regions are defined through which the materials of interest can conv
In contrast, the particle-based SPH technique does not require an enclosing computat
mesh or grid and hence there is no requirement to explicitly represent void regions.

In the free-Lagrange scheme developed here, the materials of interest must alway
enclosed within a global computational domain. Consequently, additional computatio
particles are required within the void region to ensure the computational mesh always
the complete domain. Free surfaces are always coincident with cell boundaries betwee
additionalvoid particlesand those particles which constitute the materials of interest. Tt
void particles are designed such that the materials of interest behave as if they are encl
within a vacuum. Void particles are assigned a nonzero fictitious mass and an EOS, usi
the same as the materials of interest, and are described by the same governing equatiol
and (2), but with zero material strength, i®= 0. Thus, only the hydrodynamic operator is
required to describe the evolution of the void particles, and the standard solution procet
may be used, except at cell boundaries between the materials of interest and void parti

In order for solid materials to behave as if enclosed within a vacuum, the followir
criteria must be fulfilled at solid/void cell boundaries:

(i) Void particles must have no influence on gradient estimates within computatior
cells containing solid material, and vice versa.
(i) Void particles must do no work on, and impose no forces on, adjoining sol
particles.
(iil) Movement of void particles must be such as to minimise the ‘volumetric error’ (se
below) in adjoining solid particles.

For particles on a solid/void boundary, criterion (i) is met by simply excluding void part
cles when performing both gradient construction and slope limiting for solid patrticles, a
vice versa. In order to satisfy criteria (ii) and (iii), modifications to the associated Riema
problems, and consequently the calculated flux (30), are required. Itis important to note
different Riemann problems are solved at solid/void boundaries, depending on whethel
target particle is solid or void, and hence at these boundaries the hydrodynantig,flgx
is not conservative. However, this is not of practical concern, since the thermodynal
volume, momentum, and energy are always accurately conserved within the material
interest—conservation violations are restricted to the fictitious void particles.

To satisfy criterion (ii), no force must be allowed to act on cell faces shared betwe
solid and void cells from the perspective of the solid cell. Hence, when evalugting
(27) for a solid cell at a solid/void boundary, the wave-processed states are taken as sil
U* = Uselig and p* = 0; i.e., the cell face is assumed to experience zero pressure and m
at the velocity normal to the face interpolated from within the solid. Also, zero deviatot
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stress is applied at the solid/void boundaries in the construction of the streng#fsfluixin
(40). These two measures ensure that no work is done by the void particles on the solid
that no forces are applied. The modified Riemann problem solved between void and s
cells, from the perspective of the void cell, in order to meet criterion (iii), is described belo

The ‘thermodynamic volume’ of a computational particle is givenM®¢mo= p/Mm
where p, m are the density and mass of the particle, respectively. The area of the c
responding cell (multiplied by unit length) gives a ‘geometric voluméegn), which is
simply a function of the spatial distribution of particles in the domain and the definitic
of the Voronoi tessellation. Ideally one should ha¥gsmo= Vgeom but in practice this
relationship is only approximately obeyed. The difference between the geometric and tl
modynamic volume can be quantified by calculating a ‘volumetric error,

Vgeom - Vthermo

volumetric error Yerr)% = x 100% (46)

Vthermo

Experience has shown that solid particles at free surfaces are prone to develop signifi
values ofVgrg (volumetric errors of up to 40% have been noted in cells at free surfaces
shell collapse simulations whe¥grrwas not controlled). Since free surfaces are define
by the position of the cell boundaries between solid and void particles, volumetric err
at free surfaces must be controlled if accurate predictions of free surface location are t
obtained. In addition, althougWeomis not explicitly used in our scheme, geometric errors
imply errors in the cell side lengthS which have a direct impact on the magnitude of
intercell fluxes. Moreover, volumetric errors for a solid cell at a free surface will change t
aspect ratio of the cell and modify the influence of its cell-centred stress in Stage 2 of
deviatoric operator (see Section 3.4.2). The control of volumetric error essentially requi
that the spacing between the solid particles and their void neighbours be regulated by
exertion of some correcting influence on the motion of the void particles. If a solid partic
has a positive/grr (cell too large) then the neighbouring void particle needs to be move
closer, and vice versa. Provided this correction is applied only to void cells, no conservat
error is introduced in the solid material.

The correction is achieved by a modification of the input states to the Riemann probl
formed between void and solid cells when forming the hydrodynamidiiy, from the
perspective of the void cell. Essentially, void particles experience the cell face formed w
the solid cell as a moving one-dimensional piston. Thus the input states at the boundan
the solid(solid, Usolig, Psolid) are specified as

Psolid = Pvoids  Usolid = 2'O(upiston+ 8Upiston) — Uvoid,  Psolid = Pvoids (47)

wherepyoid, Uvoid: Pvoid are states interpolated to the boundary from within the ugjgonis
interpolated from within the solid, andis taken as positive toward the solid. The quantity
Supistonrepresents an adjustment to the piston velocity which is used to control the volume
error and is calculated as

characteristic cell dimension (48)
characteristic flow time ’

Supiston= HVerr H =C x

where C is a constant to be selected by the user. In practice we have found that the
lution is insensitive to the value & over a wide range. For the beryllium shell problem
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(see Section 4.2 was taken as

typical cell diameter

H=20x - -
stopping time

(49)

Using this method, the volumetric error at the shell surface was maintained at less than
throughout the simulation. It should also be noted that this technique does not specific
introduce any restriction on the size of the stable timestep for the overall scheme. The
of the stable timestep, however, can be controlled by particle pairs in the void regions
can anywhere else in the calculation, since a flow calculation is still required in the voic

4. NUMERICAL EXAMPLES

4.1. Introduction

In order to illustrate the effectiveness of our technique, three simulations are preser
The first comprises the collapse of a cylindrical beryllium shell following initialisation witt
a radial velocity directed towards its centre. Next, the shock-capturing properties of
scheme are investigated by simulating wave structures generated during a moderate-ve
impact on a semi-infinite aluminium target. Finally, the large deformation capabilities of t
scheme are investigated with the simulation of a high velocity impact. Material propert
utilised in the three simulations are listed in Table | (here shock Hugoniot data is taken fr
[48]). Where appropriate, the results obtained using the technique are compared to t
using the commercial AUTODYN-2D software. AUTODYN-2D [5] is a nonlinear transien
dynamic analysis program which offers several solvers including both fixed-connectiv
Lagrangian and meshless Lagrangian SPH solvers. Validation of our scheme is additior
obtained by comparing the shell collapse simulation with an analytical solution.

4.2. Collapse of Thick-Walled Cylindrical Beryllium Shell

This problem simulates the collapse of a cylindrical beryllium shell in a vacuum wh
subjected to an initial radial velocity directed towards its centre. As a consequence of ra
convergence, the shell will thicken during collapse, and its kinetic energy is irreversil
converted to internal energy through the dissipative plastic distortion mechanism. The
lapse terminates at a ‘stopping radius,’ which is a function of the initial conditions. Tt

TABLE |
Material Properties for Aluminium, Steel, and Beryllium

Property Aluminium Steel Beryllium
Density,p (kgm3) 2785 7900 1845
Bulk sound speedy (ms™) 5328 4600 ®k kD
Particle-shock velocity slop& 1.338 1.490 1.124
Griineisen parametey, 2.00 2.17 Hokkk?
Shear modulusG (kPa) 2760x 10 8.530x 10’ 15100 x 10"
Yield stress)Y, (kPa) 0300 x 1C° 0.979x 10° 0.330x 10°

axxxx denotes properties not required for the Osborne EOS. Additional parameters for the
Osborne EOS can be found in the text.
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problem presents an interesting challenge for a free-Lagrange hydrocode. Key criteria f
successful simulation are that (i) the computational mesh retains circumferential symma
and (ii) the scheme accurately predicts the stopping radius. This problem is a modifical
of that of Verney [41] who experimentally studied the collapse of spherical uranium shel

4.2.1. Initialisation

The shell is initially 20 mm thick with an internal radius of 80 mm. Relevant materie
properties for beryllium are listed in Table I. The Osborne EOS is used, with the followir
parameter values:

a3 = 0.951168 ap = 0.345301 a; = —0.345301
bp =0.926914  b; = 2.94842Q0 b, = 0.507979
Co = 0.564362 c; = 0.620422 ey = 0.800000
po = 1.845 Pmin = —0.10.

Note that these parameters are given in the (gmu@hunit system and hence the calculated
pressure is in units of Mbar and sound speed in units ofism/

From a consideration of the governing equations in cylindrical coordinates, ignori
elastic effects and compressibility of the shell material, the initial radial velocity at tf
inner surfaceug, required to produce an inner stopping radius,ds (see the Appendix)

2YoF (o, A
Ug = &, (50)
V3pIn(Ry/Ro)
whereRy andR; are the initial inner and outer radii and the functiétx, A) has the form

1 2 2
F(oz,A):/ xln<1+ a;a )dx, (52)
A

where

Ri—Ro
Ro b

andrq(t) is the dynamic inside radius. The numerical integration of the fundtian 1),

for a range of values af, is shown in Fig. 2. Furthermore, the outer stopping radjusn
be related to the initial inner surface velocity via

A= r(/)/RO’ X = rO(t)/R07 (52)

o=

3RZ ) R
F(LE)zUS{E‘%fo né, (53)

where

1 2R2
F(z,g):/ zIn(%) dz, € =ri/R;, z=r11()/R.  (54)
£ Ry — RI+Z°R}

For the present shell configuratian= 0.25. Three simulations have been performed, with
inner stopping radii selected gs= 50, 45, and 40 mm, respectively. The initial velocity
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Fe, M)

0 0.1 02 03 04 05 06 0.7 08 09 1
A=ri/Ry

FIG. 2. Numerical integration of the functioR («, 1) for a variety of values of = (R; — Ry)/Ro. Ry and
R, are the initial inside and outside radii ards the inner stopping radius.

Ug required at the shell inner face for these collapses, and the associated outer stor
radii, as predicted by the above analysis, is given in Table II. Each of the three shell colla
calculations were initialised by constructing a full 360-degree circumferentially symmet
distribution of both beryllium and void particles such that the initial Voronoi diagrar
provides the desired shell dimensions—see Fig. 5a. The stiffened gas EOS was ch
to describe the void particles, with material properties taken as those of aluminium—
Table I. Aluminium properties were chosen because aluminium has a lower compressib
than beryllium and hence the timestep is not excessively restricted by the central cor
void particles as they are compressed by the collapsing shell.

Mesh resolution is the same for each collapse. The shell is represented by 20 ring
particles, equally spaced in the radial sense, each ring containing 256 particles. The r
comprises a total of 13,937 particles, 8,817 of which fill the void regions. To initiate
collapse, the particles representing the shell are given an initial radial velgcityvhich,
assuming incompressible flow, is obtained simply from

U = ;ﬁuo. (55)

TABLE Il
Theoretical Collapse Parameters for the Cylindrical Beryllium Shell,
as a Function of the Inner Stopping Radiusr;

ry (mm) ro/Ro F(a, A) Uo (Mms™) F(z &) r; (mm)
50 0.6250 0.187946 417.1 0.120298 78.10
45 0.5625 0.223336 454.7 0.142933 75.00

40 0.5000 0.259727 490.2 0.166159 72.12
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FIG. 3. Energy time histories for the three beryllium shell collapsgs= 50, 45, and 40 mm. Shown are
internal and kinetic energy histories for the free-Lagrange sdfuenlm-EP(dashed line) and the AUTODYN
fixed-connectivity solver (solid line).

A CFL number of 0.4 is used in timestep control, and since the relative distortion of t
material is low, the computational mesh is fully reconstructed on only 1 timestep in 10.

4.2.2. Discussion

For the three collapses the time histories of the energy distribution and of the inr
middle, and outer radii are plotted in Figs. 3 and 4, respectively. The inner and outer s|
radii are calculated as an average of the vertex positions of the computational mest
solid/void boundaries for the complete shell circumference. The middle raglgimilarly
tracks a material surface which is initially located/t = (Ry + Ry)/2.

Figure 3 shows the nearly identical energy time histories for each collapse for both
free-Lagrange solvevucalm—EPand the AUTODYN-2D fixed-connectivity Lagrangian
solver. In each case the initial kinetic energy of the shell is converted into internal ene
as irreversible plastic work is done. Total energy is accurately conserved in both scher
In the early stages of the collapses the material distortion is purely plastic, but as a la
percentage of the initial kinetic energy is dissipated, portions of the shell enter the ela
regime. Eventually, an approximate state of rest is reached after which no further per
nent plastic distortion occurs, but the shell maintains a small-amplitude elastic oscillati
This residual motion is not accounted for in the theoretical analysis, in which pure plas
behaviour has been assumed. Therefore, in order to compare the simulated shell beha
with theory, the stopping time is taken as the period required for 99.9% of the initial kine
energy to be converted to internal energy. Table Il gives the stopping times for the simt
tions, together with the percentage errors for the inner and outer stopping radii relative
the theoretical values. Since the shell retains residual elastic motion the final stopping
are taken as the median radii for the first elastic oscillation. The scheme is seen to m
closely the theoretical stopping radii; agreement is to better than 1% in every case. F
the limited range of the three cases investigated here, the difference between the simu
and theoretical radii appears to increase for the inner shell face and decrease for the
as the severity of the collapse is increased.

Time histories for the shell radii are illustrated in Fig. 4 and are seen to be in clo
agreementwiththe AUTODYN-2D fixed-connectivity solver. Stopping times and deviatiol
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TABLE Il

147

Beryllium Shell Collapse Results for the Free-Lagrange Solver

Final radius

Initial kinetic energy Stopping tifhe  Inner radius Outer radius
ry (mm) (MJ) (ms) error (%) error (%
50 1.4401 127.8 —0.024 —0.662
45 1.7114 133.6 +0.267 —0.625
40 1.9891 137.0 +0.853 -0.571

2 Stopping time is the time taken for the shell to dissipate 99.9% of its initial kinetic energy.
® Inner and outer radius errors are relative to incompressible theory.

from the incompressible theory are shown in Table 1V for the fixed-connectivity solver. T|
recorded time for the shell to dissipate 99.9% of the initial kinetic energy is consisten

longer with the free-Lagrange technique, ranging from an increase of 0.95% for the 40-i

collapse to 1.64% for the 50-mm collapse. Differences between the stopping radii and
theoretical prediction are generally smaller than they are for the free-Lagrange solver.

maximum deviation from the incompressible theory for the inside and outside radii we

recorded for the 40-mm collapse as 0.090% and 0.025%, respectively.

Table V compares the stopping radii for the two numerical techniques. Also included
data characterising the degree of circumferential symmetry achieved by the free-Lagre
solver at the end of the collapse. These data include the standard deviation of the norma
particle radiusr, which is determined as follows. First a mean radiuss calculated for
each of the 20 circumferential rings=1, ..., N,

>

| =256

(56)

Theoretical ) |

T T

TThedretical r§

;’I‘hef?retié:al r'i
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FIG. 4. Radius time histories for the three beryllium shell collapsgs<(50, 45, and 40 mm) for the free-
Lagrange solveWucalm-EP(dashed line) and the AUTODYN fixed-connectivity solver (solid ling).r;, and
rn, are the inner, outer, and middle radii, respectively. Also shown are the inner and outer stopping radii obta

from incompressible theory.
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TABLE IV
Beryllium Shell Collapse Results for the AUTODYN-2D
Fixed-Connectivity Lagrangian Solver

Stopping radius Stopping tirhe Inner radius Outer radius
ry (mm) (ms) error (99) error (%}
50 125.7 +0.066 +0.023
45 131.4 +0.050 +0.018
40 135.7 +0.090 +0.025

2 Stopping time is the time taken for the shell to dissipate 99.9% of its
initial kinetic energy.
b Inner and outer radius errors are relative to incompressible theory.

wherer " is the radial position of an individual computational particle in the shell. Norma
ising with respect to this mean radius for each ring, the standard deviation for the parti
radii is calculated,

1 N )
N x | - Z(rin_l)ZX].OO% P —

—
-5

o (%) = (57)

—_
=)

|
i=1 n=1

In addition, the minimum and maximum deviations from the mean radii are quoted for a
particle in the shell.

Agreement of the inner and outer stopping radii between the free-Lagrange &
AUTODYN-2D fixed-connectivity solvers is excellent: no difference exceeds 0.8%. Tt
preservation of circumferential symmetry, evident in the final mesh configurations illu
trated in Figs. 5b, ¢, and d, is quantified by the standard deviation of the normalic
particle radius, which reaches a maximum of 0.038% for the 45-mm collapse. The me
mum and minimum deviations from the mean radii are perhaps more informative. As ¢
might expect, the minimum and maximum deviations increase in magnitude as the fi
stopping radius decreases, i.e., as the distance travelled by the computational particle
creases. In conclusion, the free-Lagrange simulation meets our two key criteria for t
test problem: circumferential symmetry is preserved, and the stopping radii are accura
predicted.

TABLE V
Beryllium Shell Collapsé*

Inner stopping  Innerradius  Middle radius  Outer radius Standard Minimum Maximum
radius,ry (mm) difference (%) difference (%) difference (%) deviatoii%) deviation (%) deviation (%)

50 —0.090 —0.358 —0.685 0.0303 —0.0923 +0.1004
45 +0.244 —0.231 —0.643 0.0379 -0.1172 +0.1213
40 +0.762 —0.056 —0.596 0.0365 —0.1381 +0.1422

2 Listed are comparisons for inner, middle, and outer stopping radii between the free-Lagrange and AUTOD'
2D fixed-connectivity solvers. Also shown, as a measure of radial symmetry for the free-Lagrange simulations
standard deviations of a normalised particle radius, and minimum and maximum deviations from that radius—
text.
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FIG. 5. Computational mesh configurations for free-running beryllium shell collapse: (a) initial mesh co

figuration for the three test collapses; (b)—(d) meshes after collapses for stopping radii of 50, 45, and 40
respectively.

4.3. Low-Velocity Projectile Impact

In this problem, an aluminium projectile strikes a semi-infinite aluminium target in vact
with an initial velocity of 400 ms?. The stiffened gas EOS is used, together with materi
properties as given in Table I. The problem has been previously investigated by Tyndall |
using a FCT-based scheme on a stationary Eulerian mesh and employing the volume-of-
(VOF) method to track material interfaces.

4.3.1. Initialisation

Figure 6 shows the initial configuration of the problem. Target and projectile dimensic
are 220x 1072 x 3.80x 1072 m and 050 x 102 x 1.20 x 10~2 m, respectively. The
target and projectile are enclosed within a global computational dom@dn310-2 x
4.00 x 102 m and are surrounded by void particles to enable unrestricted free surf:
motion. As in the preceding problem, the void particles are modelled using the stiffer
gas EOS and are assigned the properties of aluminium.

Simulations are performed at five levels of mesh resolution in order to study the c
vergence of the scheme. Initial particle spacings inthand y-directions are the same
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Target

Projectile 1 \k\\\\k\\\\

FIG.6. Computational domain for low-velocity impact simulation. Shown are a projectile with initial velocity
400 ms?, and a semi-infinite aluminium target containing Lagrangian reference points 1-5 (see text).

at each level of resolution, i.eAx = Ay. Data for the five computations are given in
Table VI. Note that the tabulated number of particles includes the void particles. Re
tive execution times, calculated from the average of three runs, are included to indic
respective CPU cost. Also shown is the number of timesteps which are executed be
the computational mesh is fully reconstruct®ikcon (See Section 3.1). Since the size of
the stable timestep decreases with increased mesh resolution, distorton of the comj
tional mesh, per timestep, lessens for increasing resolution, and hence the maximum v
of Nrecon that can be safely employed increases as the mesh is refined. Incrdasing
reduces the CPU usage per timestep; hence the quoted execution times are an indic
of the relative expense of each level of refinement when executed under conditions of |
practice.

The problem is executed to an elapsed time of& @fter initialisation and a CFL number
of 0.3 is used throughout. Actual computation time for the coarsest mesh (4800 partic
is approximately 210 s on a Pentium Il 450-MHz processor.

TABLE VI
Particle Distributions, Mesh Reconstruction Details,
and Relative Execution Times for the Low-Velocity Pro-
jectile Impact Simulation

Number of Relative execution
particles Nrecon times
4800(60 x 80) 1 1.00
19200(120x 160 3 4.7
30000(150x 200 5 8.1
76800(240x 320 8 32.3
120000(300 x 400 10 64.1

2 Five levels of mesh resolution are used to study scheme con-
vergence with initial mesh resolution identical in both and y-
directions. Necon IS the number of timesteps executed before the
computational mesh is fully reconstructed.
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FIG.7. Energy time histories for low-velocity impact simulation, depicting kinetic energy and internal enere
for both the projectile and the target, plus system total energy. (a) Energy histories at differing levels of part
refinement-numbers indicate total particles in calculation. (b) Comparison between the free-Lagrange soll
(solid line—76,800 particles, CF& 0.3, Niecon = 5) and that obtained using the AUTODYN fixed-connectivity
Lagrangian (dashed line) and SPH (dotted line) solvers.

4.3.2. Discussion

Convergence of the scheme under refinement is gauged by comparing the energy
histories at each of the five resolution levels; see Fig. 7a. Shown are the internal
kinetic energies for both the projectile and the target, plus the total energy of the syst
The minimum in the projectile internal energy, which occurs after approximately.is35
provides a convenient point of comparison. On refining from 4,800 to 19,200 particl
the change in internal energy seen, at this minimum is just over twice the corresponc
change between the 19,200 and the 76,800 particle meshes. This is consistent with
order convergence. Visual inspection of the curves shows similar convergence behav
throughout the calculation. The change in energy levels between the two finest mesh
typically less than 0.5%. Therefore, for the purpose of comparison with the other solve
the level of convergence obtained with 2420 particles is deemed adequate. Fig. 7t
compares the energy histories of the AUTODYN fixed-connectivity and SPH solvers w
that of the free-Lagrange solver. Agreement among the three techniques is generally ¢
and itis evidentthat out of the four schemesWhealm-EP solver most accurately conserves
total energy. The total energy differs from the initial kinetic energy of the projectile (the on
energy present at= 0) at the termination of the calculation£ 3.0 us) by 0.0052% for
theVucalm-EP solver compared with 0.52% for the Euler, 1.11% for the fixed-connectivity
and 0.69% for the SPH solver.

Figure 8 illustrates the wave structures generated in the projectile and target at
1.0, 2.0, and 3.Qus after problem initialisation. At 0.&s, shock waves, generated at the
impact plane, are seen to propagate leftward, back into the projectile, and rightward |
the target. Since the impactors share common material properties, these waves are ide
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(a) 0.5 us (b) 1.0 s

(e) 0.5 ps (f) 1.0 ps (g) 2.0 us (b) 3.0 s

FIG. 8. Transient results from low-velocity impact at elapsed times of 0.5, 1.0, 2.0, ands3after initial
projectile impact (76,800 particles, CEE 0.3, Niecon = 5). Shown are the material interfaces and contours of total
X-wise stress, with a contouring interval of @5 x 10° kPa. Panels (a) to (d) show the solution from the scheme
in normal operation and (e) to (h) display the solution when piecewise-constant data reconstruction is used.

along the axis of symmetry. By 1,@s, rarefaction waves, which originate from shock
reflection at the upper and lower free surfaces of the projectile, are about to meet at
symmetry axis. The left-running shock wave has also reached the rear of the projec
and has reflected as a rarefaction. The ability of the technique to model elastic—pla
response is evident in the splitting of the right-running shock wave at this time. Aft
2.0 us, the two-wave family has matured and an elastic precursor wave and trailing pla:
shock have formed. The rarefaction returned from the rear of the projectile has now cros
into the target, producing a region of high tensile stress inxtd@ection (a maximum of
approximately—1.9 x 10° kPa). At the final elapsed time of 3405, wave structures have
reached the top and bottom of the target, and the plastic shock is beginning to wea
due to the interaction with trailing rarefactions. Deformation of the impactors is visib
at the impact plane, and at the rear and top and bottom of the projectile. By perform
calculations in which the first derivatives of the primitive variabjes, v, p) and the stress
gradients (see (37)) within individual computational cells are set equal to zero, it can
shown that the scheme benefits from linear data reconstruction. Figures 8e to 8h illust
the solution when such piecewise-constant data reconstruction is used. In this first-o
solution the wave structures are distinctly more diffuse than in the solution obtained us
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the MUSCL formed gradients. Calculation of the observed order of the scheme under ir
refinement, via the evaluation of a grid convergence index (GCIl), as advocated by Roe
[29], has also indicated local convergence which was never below order 1.4 [17] for t
problem.

A consideration of the evolution of this simulation uncovers a limitation in the free
Lagrange solver as currently configured. When two materials come into contact, the so
considers them to be merged with infinite friction. In practice, for such alow-velocity impa
this is physically unrealistic since no tensile force would exist between the projectile &
target in thex-direction, i.e., the impactors would not become physically fused togethe
Lagrangian slidelines or contact logic, used in traditional fixed-connectivity Lagrangi
solvers, would correctly model this. Note that in the calculations performed using t
AUTODYN fixed-connectivity solver, this feature was disabled in order to permit dire«
comparison with the free-Lagrange results. Since our scheme calculates the direct and -
stresssy, andsy,, acting on each cell face, a number of physically more realistic materi
models could, however, be incorporated in the future. For instance, if at material interfac
Sy, Was setto zero arsl,, was limited to negative values (positive directed out of cell) in the
deviatoric operator, ang* was limited to positive values in the hydrodynamic operator, the
this would result in a zero friction interface unable to support tension. More challengir
however, would be to enable such interfaces to separate, as this would require the cre
of void particles at the interface as separation occurred. Similar considerations woulc
required to model fracture and spallation. This issue will be the subject of future work.

In order to further compare the solution obtained using the free-Lagrange solver with b
the AUTODYN-2D fixed-connectivity and the SPH solver, five Lagrangian reference poir
are defined along the symmetry axis within the target (Fig. 6). Point 1 is initially 1.8125 rr
from the impact plane, and the point spacing is 3.6250 mm. Figure 9 shows the time histc
of x-wise velocity, pressure, density, and total stress inxtigérection, recorded at these
points, for the free-Lagrange and AUTODY N fixed-connectivity solvers. The arrival time
and amplitudes of the various wave systems are generally in good agreement at all pc
Shock resolution is comparable, yet there is some disagreement in the values of pre:
(2.4%) and density (2.1%) reached behind the first shock as recorded at point 1. -
also has an impact (1.6%) on the tokalvise stress attained sineg = —p + . It is
suspected that this is caused by slight differences in the EOS used in the two solver:
this problem. The Mie—Gnieisen EOS, utilising a linear shock Hugoniot as the referenc
curve, was used in the AUTODYN solver, while the stiffened gas EOS was used in
free-Lagrange solver. The evolution of the right-running composite shock wave is clee
revealed in the time histories. At point 1, only a single incident shock is seen. At point
the shock front shows a break in slope, which is the first indication of shock splitting. .
points 3 to 5 the elastic and plastic waves are distinct, with the elastic precursor increasi
separated from the plastic shock. Note that both the elastic and plastic waves remain ¢
and well resolved in the free-Lagrange calculation, while the fixed-connectivity solv
suffers some diffusion and loss of wave steepness as the wave system propagates from|
1to5.

Figure 10 shows a similar comparison for the AUTODYN SPH and free-Lagrange solve
Again the two techniques show good agreement for the arrival times and amplitudes of
right-running compression wave and the reflected rarefaction. As one may expect, the !
solution is considerably more diffuse.
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FIG.9. Time histories for low-velocityimpact simulation, recorded at Lagrangian reference points 1 to 5 with
the target (see Fig. 6). Solid line is solution obtained using the free-Lagrange technique (76,800 particles, CF
0.3, Nrecon = 5); dashed line depicts solution obtained using the AUTODY N fixed-connectivity Lagrangian solve

4.4. High-Velocity Impact Simulations

For the final numerical examples, simulations of high-velocity (3.1 Rraluminium and
steel projectiles impacting a thin aluminium target are presented. Following the categor
tion proposed by Swift [32] and Zukas [47], the impact velocity lies somewhere betwe
high and hypervelocity for the structural metals aluminium and steel. Thus we would ¢
pect to observe a highly localised fluid-like plastic response, since the pressures genel
by the impact will be orders of magnitude greater than the yield strength of the mater
The problem is dominated by inertia, is momentum driven, and would undoubtedly feat
material failure. Because of the large and highly localised deformation common in this ty
of problem, simulations using conventional hydrocodes would normally be restricted
Eulerian schemes or to SPH.
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FIG. 10. Time histories for low-velocity impact simulation, recorded at Lagrangian reference points 1 to
within the target (see Fig. 6). Solid line is solution obtained using the free-Lagrange technique (76,800 partit
CFL = 0.3, Niecon = 5); dashed line depicts solution obtained using the AUTODYN Lagrangian SPH solver.

4.4.1. Initialisation

The computational domain employed in this simulation is shown in Fig. 11. The initi
particle distribution, which completely fills the domain, is constructed from a numb
of elements. A circumferentially symmetric distribution consisting of 4,505 particles
used to discretise the circular projectile, which is 10 mm in diameter. Rectilinear parti
distributions are used elsewhere to form the rectangular targeB2mm) and the majority
of the void region. The void region must be relatively large in order to provide sufficie
space to accommodate the anticipated large-scale deformation of the target and proje
The total number of particles initially within the domain is 36,275, 2,500 of which ar
used in the target. Therefore, only approximatel$ df the total computational particles
constitute materials of interest. Fine distributions of void particles are used close to
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FIG. 11. Domain configuration for the high-velocity impact of aluminium and steel projectiles on a thil
aluminium target. Dashed lines enclose regions of fine particle distribution. The aperture in the left bounc
admits void particles throughout the calculation.

projectile and target (indicated by the dashed lines in Fig. 11), and coarser distributi
are used in the remainder of the domain to help reduce computational cost. Througt
the duration of the calculation, additional void particles are added through an apertur:
the left-hand boundary, at the impact velocity, to maintain the integrity of the computatiot
mesh. Again the stiffened gas EOS is used for both steel and aluminium (see Table |
material properties). A CFL number of 0.3 is used in timestep control, and the mest
fully reconstructed every 3 timesteps. The solutions are compared with results from
AUTODYN SPH solver. Since no void regions are required for the SPH solver, only
discretisation of the target and projectile using SPH nodes is necessary.

4.4.2. Discussion

Transientresults to an elapsed time of @from initial impact are shownin Fig. 12 for an
aluminium projectile striking an aluminium target. Figures 12a—12h show the material ¢
ometry and pressure distributions predicted by the free-Lagrange solver, while Figs. 12i—
show node locations for the comparable AUTODYN SPH solution. As expected, the mass
compression generated by the impact produces extreme pressures. After(Ei§. 12a),

a shock wave is seen running leftward into the projectile closely followed by the rarefacti
formed at the rear face of the target. Here all shocks are ‘overdriven’ and hence no split €
tic/plastic wave structures are observed. The pressure at the centre of the projectile, be
the leftward running shock, is recorded asél8 10° kPa. Figure 13 shows part of the free-
Lagrange computational mesh in the vicinity of the projectile atdlsOEven at this early
time, Lagrangian motion of the mesh, and the formation of ejecta from both the projec
and target, is evident. Considerable deformation of both projectile and target is seensat 2.
(Fig. 12b), with thin arms of ejecta released from the front face of the target. Reflection
the focused wave structures at the rear face of the projectile, observable in Figs. 12b
12c¢, produces a region of strong tension. A tensile pressurd 80 x 10 kPa is noted in
the core of the wave structure. With a more realistic material model, failure by spallati
would be expected here. By 443, the majority of this wave has reflected as a compressic
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FIG. 12. Transient results illustrating material deformation and wave structures for the high-velocity impz
of a circular aluminum projectile on an aluminium target. (a)—(h) free-Lagrange solution—plotted are mate
interfaces plus pressure contours with a contour interval®k110° kPa. (i)—(p) SPH solution—black and grey
points are SPH nodes in the target and projectile, respectively.
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FIG. 13. Detail of free-Lagrange computational mesh for the high-velocity impact simulation, aluminiur
projectile and target, at 1,0s. Heavy lines are free surfaces.

front and is crossing the boundary from the projectile into the now highly deformed targ
Regions of ejecta have begun to break away from the front of the target and continu
high velocity into the void regions. By 7.0s, the projectile penetrates the target to suct
an extent that the narrow remaining regions of the target present little resistance and
target has only marginal influence on the momentum of the projectile. At later times, 1
target material ligaments above and below the projectile are stretched and narrowed
they are represented by only a single row of particles, at which stage the material typic
fails due to ‘numerical fragmentation.” This occurs when the particles representing the |
ament move sufficiently far apart that, upon mesh reconstruction, adjacent particles ce
to be connected. Hence tensile forces can no longer be transferred through the ligan
At this point fragmentation occurs and void particles begin to fill the gap. Such numeric
fragmentation is evident in the ejecta and the highly deformed target in Fig. 12h.

The SPH results (Figs. 12i—12p) show deformations at each time that agree clos
with the free-Lagrange solution. Slight differences develop as the calculation proce
due to the numerical characteristics of each of the two schemes. For instance, the !
method is well known for displaying an instability in tension. As a consequence, the regi
subjected to large tensile forces, in the rear of the projectile, exhibits a ‘numerical fractu
at 2.0us, forming a void in the projectile. This void persists and continues to grow fc
the remainder of the calculation. The presence of the void enlarges the projectile s
that it extends over a thickness of approximately 11.6 mm irxth@ection after 8.Qus
compared to approximately 6.8 mm, as illustrated in Fig. 12h. Despite these differences,
final configurations are very similar for both schemes. The progress of the projectile thro
the target is approximately 20.5 mm for the free-Lagrange solver, compared with 21.9 1
obtained using SPH, while the widths of the holes produced in the target are approxima
19.2 mm and 20.5 mm, respectively.
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(e) 5.0 ys

(i) 1.0 ps

(m) 5.0 us (n) 6.0 us {0) 7.0 ps

FIG.14. Transientresultsillustrating material deformation and wave structures for the high-velocity impact
a circular steel projectile on an aluminium target. (a)—(h) Free-Lagrange solution—plotted are material interf
plus pressure contours with a contour interval & £ 10° kPa. (i)—(P) SPH solution—black and grey points are
SPH nodes in the target and projectile, respectively.
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A second high-velocity impact simulation was performed in which all parameters are
changed, with the exception that the projectile is constructed from steel. Transient soluti
for the simulation, performed using both free-Lagrange and SPH, are shown in Fig.
Since the steel projectile is more massive and so possesses significantly more initial kir
energy, the compression on impact is more severe than for the aluminium/aluminium pr
lem. At 1.0us, a maximum pressure of approximately®% 10° kPa is generated within
the projectile behind the left-running shock wave. Also, as there is now an impedance n
match at the interface between the projectile and target, the rarefaction produced at
rear of the target is not fully transmitted into the projectile. Instead, a proportion of t
rarefaction is reflected back into the target as a weak expansion wave. This produc
minimum pressure 0f9.5 x 1P kPa and total tensil&-wise stress 0f-9.9 x 10° kPa
at the interface between the steel and aluminium. As in the aluminium/aluminium sim
lation, the free-Lagrange scheme resolves a number of complex wave interactions. In
steel/aluminium case, shock focussing within the projectile produces a high pressure ‘c
which is apparent from 3.0s onward, while the region of high tensile stress seen at th
rear of the projectile in the aluminium/aluminium case is now absent. A maximum press
of 27.2 x 10° kPa (close to that produced upon initial impact) is recorded very near the re
of the projectile. After 4.Qus (Fig. 14d), the projectile has made marginally more progres
through the target compared with the aluminium/aluminium solution. The deformation
the projectile is also considerably less due to the increased yield stress of the steel.
amount of ejecta formed is also significantly reduced. In the aluminium/aluminium sir
ulation, roughly equal quantities of projectile and target material were ejected from t
front of the target. However, since the steel projectile is more resistant to deformation,
steel is released to form ejecta. Furthermore, the projectile ‘plugs’ the target, retainin
larger proportion of the target material on the front half of the projectile. This decreas
the amount of material available to form ligaments above and below the projectile. C
sequently, the ligaments are thinner and suffer earlier numerical fragmentation than in
aluminium/aluminium simulations (see Fig. 14f).

Results obtained for the steel/aluminium problem using SPH are illustrated in Figs. .
to 14p. As in the aluminium/aluminium simulation, the SPH solution closely matche
the free-Lagrange results at early times. The solutions begin to differ noticeably at .
to 3.0 us, when the SPH simulation undergoes numerical fracture at the projectile/tar
interface as a result of large local tensile forces, forming a void between the projectile :
target. This is a numerical artifact similar to the fracture at the rear of the projectile in t
aluminium/aluminium case, the different location of the failure reflecting the changed strt
distribution. However, the absence of high tensile stress in the bulk of the steel projec
means that it remains intact, and despite the formation of the void between the projectile
target, the projectile deformation very closely matches that predicted by the free-Lagra
solver. At 8.0us, the progress of the projectile through the target agrees almost exac
(approximately 22.8 mm for both methods) while the target hole is marginally larger f
SPH (16.4 mm as against 15.7 mm).

In both the free-Lagrange and SPH simulations presented here, ‘penetration’ proble
as reported by Monaghan [24] and commonly observed in particle methods, do not appe
be of concern. The authors have previously investigated the problem of mesh-induced |
etration errors at material interfaces in free-Lagrange simulations of gas-phase Richtm:
Meshkov instability [18]. Because material interfaces always lie along cell boundaries
our scheme, the interfaces are typically slightly wrinkled at the length scale of the me
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pitch. If the interface is unstable, then such wrinkles introduce high-wavenumber pertur
tions to the interface, which can grow to contaminate the solution. In [18] we introduc
a simple interface smoothing algorithm to damp out such perturbations. However, in
present work the smoothing algorithm was found to be unnecessary and has not been:
Although the presence of material strength may be expected to inhibit the growth of in
face instabilities, we also repeated several cases without material strength and found
the interfaces remained well behaved. It is the authors’ opinion that in the simulations f
sented here, particularly the high-velocity impact, penetration problems are not obsel
at material interfaces either because the interface is not particularly unstable or becaus
time scale of the simulation is much shorter than the development time of any instabilit

5. CONCLUDING REMARKS

We have presented a conservative, two-dimensional humerical scheme which mo
elastic—perfectly plastic solids using planar geometry, in the Lagrangian reference fra
By decomposing the total stress tensor into a hydrostatic pressure and deviatoric stress
ponent, the governing equations can be solved sequentially in time using a time-oper
splittechnique. A hydrodynamic operator, based on a second-order, finite-volume Godu
method is used to advance the conserved variables to an intermediate time level. Next, &
arate deviatoric operator calculates a new stress state, based on these intermediate val
order to provide a final conservative update. Since the scheme is fully Lagrangian, mate
interfaces are sharply resolved at all times and multimaterial problems can be represe
easily-no additional algorithms are required to track material interfaces. Riemann pr
lems, formed at the boundaries between individual computational cells, are solved usin
approximate two-shock solver to obtain Godunov fluxes, and materials are character
solely by a linear approximation to the shock Hugoniot and the local sound speed. Th
fore, a broad range of materials can be simulated including fluids (the techniques discu:
in this paper have previously been employed to simulate the collapse of air cavities in wi
[3]) and condensed materials. In high-distortion calculations, the tangling of conventio
fixed-connectivity Lagrangian meshes is avoided by utilising the free-Lagrange meth
All variables are considered to be ‘cell-centred,’ being stored at computational partic
which are the only permanent feature of a calculation.

To illustrate the characteristics of the scheme, a variety of numerical examples w
presented. The first simulated the collapse of a cylindrical elastic—plastic shell. For ara
of moderately severe collapses the scheme maintained a high degree of circumfere
symmetry and reproduced an analytical stopping radius, obtained from an incompres:
model, consistently within 1%. Simulations of the shell collapse also agreed closely w
those performed using a conventional fixed-connectivity solver. The shock-capturing pr
erties of the scheme were investigated and compared with those of a fixed-connect
and SPH solver by simulating a low-velocity impact problem. The scheme was found
diffuse shock waves less than the other solvers and to converge at first-order or better u
mesh refinement. By simulating a high-velocity impact, it was also demonstrated that
scheme is capable of computing arbitrarily large material deformations. The computatic
cost of the method is found to be significantly more than that of fixed-connectivity a
SPH solvers. The computational efficiency of the technique suffers somewhat due to
necessity of using void particles in vacuum regions and to the requirement to perfc
frequent mesh reconstructions.
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The authors believe, however, that the proposed technique provides a sound found:
for more advanced material modelling and the incorporation of more realistic physics.
avoiding the complexities of incorporating material strength within the Riemann proble|
behaviour such as work hardening can be easily included. For example, the constant \
strength utilised in the definition of the yield condition can be made a function of the equ
alent strain recorded at individual particles. Such refinements will be the subject of fut
work.

APPENDIX: THEORETICAL CYLINDRICAL COLLAPSE MODEL

In this section, the theoretical collapse of a spherical shell, as presented by Verney [
is reworked for the case of a cylindrical shell. The objective is to find an initial velocit
distribution necessary to symmetrically collapse a cylindrical shell such that all the init
kinetic energy is dissipated through plastic work and the shell comes to rest at a fi
‘stopping radius’ of ;. The initial and transient configurations of the shell are illustrated il
Fig. Al.

A.1. Stresses for Cylinder Yield

Using the generalised Hooke’s law, and assuming the shell material is incompressible
state of stress in an elastic cylinder subjected to plane straia Q) can be expressed as

20y — 0y — 0, = 6Ge;
209 — 0, — 0 = —6Ger (A1)
20, — oy —opg =0,

whereoy, 0y, 0, are the total stresses acting in the radial, circumferential, and longitudin

directions, respectivel\G is the shear modulus, argl is the radial strain. To detect the
onset of plastic flow we can introduce the von Mises yield condition,

(01 — 02)% + (02 — 03)? + (03 — 01)? = 2Y¢. (A2)

FIG.Al. Initial and transient configuration of cylindrical shell collapse. H&eandR, are the initial outside
and inside radii, and, (t) andr,(t) are the outside and inside radii during the collapse.
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Since at any point in the cylinder the radial, circumferential, and longitudinal directions ¢
also principal directions, this can be recast as

(0r — 09)? + (09 — 07)? + (0, — 0v)% = 2Y¢, (A3)

whereY; is the yield stress in simple tension. It follows from the last expression in (A1) th

oy + oy

GZ = 2 N (A4)
which upon substitution into the yield condition, (A3), yields (see Nadai [25])
2 Y, (A5)
09 — oy = —=Yo.
6 r \/g 0
Defining the hydrostatic pressure as the mean of the three stresses, we have
1
p= —é(ar + 09 + 02), (AB)
or utilising (A4),
1
p=—50r +0p). (A7)
Combining this pressure definition and the yield condition yields
1 1
oo=p——=Y and oy =p+ —=Yo, (A8)

V3 V3

which are the stresses required in the radial and circumferential directions to produce yi
ing of the cylinder.

A.2. Plastic Work Done During Collapse

For cylindrical symmetry the Lagrangian governing equations may be reduced to o
dimensional equations with a geometric source term,

dp ou u )
— = —p| — + — ) (conservation of mass A9
dt p< L ) ( ) (A9)
du 9oy o0y —o .

p— = — — ——— (conservation of momentum) (A10)
dt ar r
dE odu u .

= —or + —oy (conservation of energy) (Al1l)

pﬁ ar r

The assumption of incompressibility reduces the continuity equation still further:

au u
— =, Al2
ar r ( )



164 HOWELL AND BALL

Substituting the stresses at yield defined by (A8), the equation for the conservation of en
becomes, for plastic flow,

dE ou u Yo /0u U
pa—p%*r)‘\—@(ﬁ‘r)’ (AL3)

and with the further simplification of incompressibility,

dE  2You
T Va3

For a cylinder of inside and outside radjit) andr1(t), the rate of change of total internal
energy per unit lengtl, is given by

(A14)

dE () dE
o= / 2ntp— dr. (A15)
dt ; t

oft) d

By assuming the collapse is incompressilkle+ ¢y + €, = 0, and for plane strairg, +
ep = 0; therefore,

du u
—+-=0 Al6
dr + r ( )
since
du u
€ = a and €y = F (Al?)

Therefore, a velocity distribution through the shell which satisfies incompressibility can
obtained by integrating (A16),

U=

C
- (A18)

whereC is a constant of integration. Combining (A14), (A15) and (A18) yields

d E'[O’[ 4 rl(t)
= ——aYoC)In —=. Al9
at — e e (A9
However, since
dEot  ro(t) dEt d Eot d Egot
— d = A20
do —cm dat " Tax = g (A20)
we have
d Etot 4 rl(t)
= ——7Y, In —= A21
ax = RN (A2

where we define = ro(t)/Ro. Using the relationshiR? — RZ = r2(t) — r2(t), whereRy
andR; are the initial inside and outside radii, we can eliminaig) andrq(t) from (A21)
to yield

dEtot 2 2 +O[2
—— = ——7Y In( 1 A22
dx \/§n OXF% ( + X2 ’ (A22)
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wherea = (R; — Ry)/Rp. Integrating,

2
AEiot = 7§nYoR§F(a, 1), (A23)

which is equivalent to the plastic work done during the collapse wheta /Ry and the
functionF (¢, 1) is given,

1 2 2
F(cx,k):/ xln<1+ “;’2“ >dx. (A24)
A

Note that similar expressions can be obtained as a function of the final outside stopj
radiusry,

2
AEior = ﬁnYo R2F(z, £). (A25)

where,

: 2R} —_—

A cylindrical shell with an initial outside radiuR, and inside radiu®l, has an initial

kinetic energy per unit length given by,

1 (R
KE:f/ 27r pu? dr (A27)
2 /Ry

Usingu = C/r the initial kinetic energy per unit length can be written,
Ry
KE = 7pC?In — (A28)
Ro

Since initially C = ugRy, whereug is the initial velocity at the shell inner face, the initial
kinetic energy per unit length is finally,

R
KE = mpu2R2In é (A29)

Equating the plastic work done during the collapse to the initial kinetic energy, and re

ranging forug yields,
2YoF (a, A
o= | _2YoF@h) (A30)
V3p In(Ry/Ro)

where the functiorF («, 1) requires numerical integration for the configuration of interest

ACKNOWLEDGMENTS

This research was funded by the Atomic Weapons Establishment, Aldermaston, UK. The authors are gra
to Andrew Barlow (AWE) for much valuable advice and@entury Dynamics Ltdior permission to use their
AUTODYN-2D software for comparison with the techniques developed in this paper.



166 HOWELL AND BALL

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.
22.

23

24
25

REFERENCES

. S. Armfield and R. Street, The fractional-step method for the Navier—Stokes equations on staggered grid:
accuracy of the three variations,Comput. Physl53 660 (1999).

. C.J. Ball, A Free-Lagrange method for unsteady compressible flow: simulation of a confined cylindrical bl
wave,Shock Waves, 311 (1996).

. C.J.Ball, B. P. Howell, T. G. Leighton, and M. J. Schofield, Shock-induced collapse of a cylindrical air cav
in water: a Free-Lagrange simulatiddhock Wave$0, 265 (2000).

. P. Batten, D. M. Ingram, R. Saunders, and D. M. Causon, A time-splitting approach to solving the Navi
Stokes equation§ompute. Fluid24(4), 421 (1996).

. N. K. Birnbaum, M. S. Cowler, M. Itoh, M. Katayama, and H. Obata, AUTODYN-An interactive non-linea
dynamics analysis program for the microcomputers through to supercomput@ransactions of the 9th
International Conference on Structural Mechanics in Reactor Technpl@plkema, Rotterdam/Boston,
1987), Vol. B, pp. 401-406.

. E.J. Caramana, Timestep relaxation with symmetry preservation on high aspect-ratio angular or tapered (
J. Comput. Physl66, 173 (2001).

. E.J.Caramana, D. E. Burton, M. J. Shashkov, and P. P. Whalen, The construction of compatible hydrodyna
algorithms utilizing conservation of total enerdy,Comput. Physl46, 227 (1998).

. E. J. Caramana and M. J. Shashkov, Elimination of artificial grid distortion and hourglass-type motions
means of Lagrangian subzonal masses and pressuf@smput. Physl42 521 (1998).

. E. J. Caramana and P. P. Whalen, Numerical preservation of symmetry properties of continuum proble

J. Comput. Physl41, 174 (1998).

J. P. Cocchi, R. Saurel, and J. C. Loraud, Treatment of interface problems with Godunov-type s6hentes,

Wavesb, 347 (1996).

J. K. Dukowicz, A general, non-iterative Riemann solver for Godunov’s meth@&bmput. Phys1, 119

(1985).

M. J. Fritts, W. P. Crowley, and H. Trease, Edehe Free-Lagrange Method.ecture Notes in Physics

(Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, (1985), Vol. 238.

P. J. Green and R. Sibson, Computing Dirichlet tessellations in the glarmg. J21, 168 (1978).

W. H. Gust, High impact deformation of metal cylinders at elevated temperalufgsl. Phys53(5), 3566

(1982).

J. O. HallquistNIKE2D-A Vectorized Implicit, Finite Deformation Finite Element Code for Analyzing the

Static and Dynamic Response of 2D Solids with Interactive Rezoning and Gralpdie®nce Livermore

National Laboratory, Technical Report UCID-19677, Rev. 1 (1986).

F. H. Harlow and A. A. Amsderkluid Dynamics Los Alamos Scientific Laboratory Technical Report LA-

4700 (1971).

B. P. Howell An Investigation of Lagrangian Riemann Methods Incorporating Material StrefgtD. thesis

(University of Southampton, 2000).

B. P. Howell and G. J. Ball, Damping of mesh-induced errors in Free-Lagrange simulations of Richtmy

Meshkov instabilityShock Wave$0, 253 (2000).

B. L. Keyfitz and H. C. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elast

theory,Arch. Rat. Mech. Analr2, 220 (1980).

X. Lin and J. Ballmann, A Riemann solver and second-order Godunov method for elastic—plastic w

propagation in soliddnt. J. Impact Eng13(3), 463 (1993).

T. P. Liu, The Riemann problem for general systems of conservationJa@®sf. Eq.18, 218 (1975).

G. H. Miller and E. G. Puckett, A high-order Godunov method for multiple condensed plaSssnput.

Phys.128 134 (1996).

. G. H. Miller and P. Colella, A high-order Eulerian Godunov method for elastic—plastic flow in solid:
J. Comput. Physl67, 131 (2001).

. J. J. Monaghan, On the problem of penetration in particle meto@smput. Phys32, 1 (1989).

. A. Nadai,Theory of Flow and Fracture of SoligMcGraw—Hill, New York, 1950).



26

27.
28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.
46.
47.

48.

FREE-LAGRANGE AUGMENTED GODUNOV METHOD 167

. B. J. Plohr, Shockless acceleration of thin plates modeled by a random choice miéfbdd, 26(4), 470
(1988).

D. Rhynsburger, Analytic delineation of Thiessen polyg@eng. Anal5, 133 (1973).

T. D. Riney, Numerical evaluation of hypervelocity impact phenomertdigh Velocity Impact Phenomena
edited by R. Kinslow (Academic Press, New York/London, 1970), pp. 157-212.

P. J. Roache, Perspective: A method for uniform reporting of grid refinement studikgds Eng116, 405
(1994).
M. Shearer, The Riemann problem for a class of conservation laws of mixed ty#, Eq.46, 426 (1982).

D. J. Steinberg, S. G. Cochran, and M. W. Guinan, A constitutive model for metals applicable at high-st
rate,J. Appl. Phys51(3), 1498 (1980).

H. F. Swift, Hypervelocity impact mechanics,lmpact Dynamicsedited by J. A. Zukas, T. Nicholas, H. F.
Swift, L. B. Greszczuk, and D. R. Curran (Wiley, New York, 1982), pp. 215-239.

H. S. Tang and F. Sotiropoulos, A second-order Godunov method for wave problems in coupled solid—we
gas systems]. Comput. Physl51, 790 (1999).

A. Tang and T. Ting, Wave curves for the Riemann problem of plane waves in elastic salidsEng. Sci.
25, 1343 (1987).

E. F. Toro and R. E. Brown, The WAF method and splitting procedures for viscous shocked fl&W, in
ceedings of the 18th International Symposium on Shock Waves, Sendai, (Bypamger-Verlag, Berlin/
New York, 1992), pp. 1119-1126.

E. F. ToroRiemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introdu¢Sipringer-
Verlag, Berlin/New York, 1997).

J. A. Trangenstein and P. Colella, A higher-order Godunov method for modelling finite deformation in elas
plastic solidsCommun. Pure Appl. Matii0, 41 (1991).

J. A. Trangenstein and R. B. Pember, The Riemann problem for longitudinal motion in an elastic—plastic
SIAM J. Sci. Stat. Comput2, 180 (1991).

M. B. Tyndall, Numerical modelling of shocks in solids with elastic—plastic conditi8heck Waves, 55
(1993).

M. B. Tyndall,Numerical Modelling of Shock Waves in Solid Materid.D. thesis (Monash University,
1991).

D. VerneyEvaluation de la limitelastique du cuivre et de 'uranium par desesipfices d'implosion ‘lente’,
in Behavior of Dense Media Under High Dynamic Pressures, Symposium H.D.P., Paris, September 1
(Gordon & Breach, New York, 1968).

C. T. WangApplied ElasticityMcGraw—Hill, New York, 1953).

L. Weixen, Simplified equation of stafe= P(p, E) andP = P(p, T) for condensed matter, Bhock Waves
in Condensed Matteedited by Y. M. Gupta (Plenum Press, New York, 1986), pp. 167-173.

B. Wendroff, The Riemann problem for materials with nonconvex equations of state I: Isentropic flc
J. Math. Anal. Appl38, 454 (1972).

M. L. Wilkins, Calculation of elastic—plastic floMeth. Comput. PhyS, 211 (1964).

N. N. YanenkoThe Method of Fractional StegSpringer-Verlag, Berlin/New York, 1971).

J. A. Zukas, Survey of computer codes for impact simulatioHligh Velocity Impact Dynamicedited by
J. A. Zukas (Wiley, New York, 1990), pp. 593-708.

Prepared by Group GMX-6&elected HugoniotfLos Alamos Scientific Laboratory, University of New
Mexico, Los Alamos, LA-4167-MS, 1969).



	1. INTRODUCTION
	2. GOVERNING EQUATIONS
	3. NUMERICAL SCHEME
	FIG. 1.

	4. NUMERICAL EXAMPLES
	TABLE I
	FIG. 2.
	TABLE II
	FIG. 3.
	TABLE III
	FIG. 4.
	TABLE IV
	TABLE V
	FIG. 5.
	FIG. 6.
	TABLE VI
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.

	5. CONCLUDING REMARKS
	APPENDIX: THEORETICAL CYLINDRICAL COLLAPSE MODEL
	FIG. A1.

	ACKNOWLEDGMENTS
	REFERENCES

