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A Lagrangian finite-volume Godunov scheme is extended to simulate two-
dimensional solids in planar geometry. The scheme employs an elastic–perfectly
plastic material model, implemented using the method of radial return, and either
the ‘stiffened’ gas or Osborne equation of state to describe the material. The prob-
lem of mesh entanglement, common to conventional two-dimensional Lagrangian
schemes, is avoided by utilising the free-Lagrange Method. The Lagrangian formu-
lation enables features convecting at the local velocity, such as material interfaces, to
be resolved with minimal numerical dissipation. The governing equations are split
into separate subproblems and solved sequentially in time using a time-operator
split procedure. Local Riemann problems are solved using a two-shock approxi-
mate Riemann solver, and piecewise-linear data reconstruction is employed using a
MUSCL-based approach to improve spatial accuracy. To illustrate the effectiveness
of the technique, numerical simulations are presented and compared with results
from commercial fixed-connectivity Lagrangian and smooth particle hydrodynam-
ics solvers (AUTODYN-2D). The simulations comprise the low-velocity impact of
an aluminium projectile on a semi-infinite target, the collapse of a thick-walled
beryllium cylinder, and the high-velocity impact of cylindrical aluminium and steel
projectiles on a thin aluminium target. The analytical solution for the collapse of a
thick-walled cylinder is also presented for comparison.c© 2002 Elsevier Science

Key Words:free-Lagrange method; elastic–plastic solids; numerical simulation;
Godunov method; time-operator splitting.

1. INTRODUCTION

This paper describes a new free-Lagrange numerical scheme (Vucalm–EP) that has
been developed in order to simulate high-rate elastic–plastic deformation of materials with
strength (i.e., the ability to withstand shear distortion). Traditionally, simulations such as
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armour penetration and hypervelocity impact have been performed using space-centred
finite-difference or finite-element schemes requiring artificial viscosity to control numeri-
cal oscillations. Large deformation problems have typically required Eulerian or arbitrary
Lagrangian Eulerian (ALE) schemes incorporating some additional algorithm for tracking
material interfaces, or complex interaction or slideline logic, respectively. Smooth particle
hydrodynamics (SPH) schemes offer an alternative, grid-free method but are relatively dif-
fusive. It has therefore been the objective of this work to investigate an alternative, fully
Lagrangian, finite-volume approach for this type of simulation. By formulating the gov-
erning equations in the Lagrangian reference frame, the need to evaluate convective fluxes
is avoided, thus eliminating a major source of numerical diffusion. As a result, features
convecting at the local material velocity, such as material interfaces, are resolved sharply
at all times without recourse to interface tracking. The tangling of conventional fixed-
connectivity Lagrangian meshes is here avoided by utilising the free-Lagrange method (see
Frittset al. [12]), in which the computational mesh maintains fully Lagrangian motion, but
the mesh connectivity is allowed to evolve in order to accommodate large material distor-
tions. A cell-centred finite-volume formulation is used which enables the implementation
of a Godunov-type solver in order to solve the hyperbolic component of the system.

High-order Godunov-type schemes have become commonplace for unsteady, inviscid,
compressible gas dynamic calculations since they provide excellent shock-capturing capa-
bility combined with relatively low numerical diffusion. However, the application of such
methods to materials with strength has been rare, due perhaps to the increased complexity
of the Riemann problem resulting from the required material models and equations of state.
For example, Tang and Ting [34] found that, in hyperelastic materials, the Riemann solu-
tion could contain composite nonlinear wave families in which a shock is in contact with a
rarefaction of the same family. Wave systems consisting of two, three, and even four wave
families instead of the usual three, where each individual family may be a simple rarefaction
fan, a shock wave, or a composite wave, were also found to be common. Despite this in-
creased complexity, the Riemann problem for the longitudinal and transverse motion in an
elastic string has been solved by Keyfitz and Kranzer [19], and for the longitudinal motion
in a strain-softening material by Shearer [30]. Also, Lin and Ballmann [20] present an inter-
esting study detailing the construction of a second-order Godunov method for the numerical
computation of elastic–plastic waves in thin-walled tubes. Trangenstein and Pember [38],
when investigating the influence of plasticity, found that the analytical solution of the
Riemann problem for the Antman–Szymczak model (a simple model describing longitudi-
nal motion in an elastic–plastic bar which ignores body forces, transverse displacements, and
thermal effects) reveals a total of 21 different wave systems, compared to the possible 10 for
the Euler equations. This situation would be complicated still further if tensile failure were to
be included. Using this experience, and motivated by the work of Liu [21] and Wendroff [44],
Trangenstein and Colella [37] construct an extension of a second-order Godunov method
to enable modelling of finite deformation in elastic–plastic solids. More recently, Miller
and Puckett [22], and Tang and Sotiropoulos [33], discuss high-order Godunov methods for
multiple condensed phases described using a Mie–Gr¨uneisen equation of state and linear
shock Hugoniot, and a hydro–elasto–plastic solid model, respectively.

Another high-order Godunov scheme recently developed for the simulation of elastic–
plastic solids is due to Miller and Colella [23]. Utilising the deformation gradient, Miller
and Colella [23] are able to obtain an Eulerian formulation of the governing equations of
solid mechanics as a first-order system of hyperbolic partial differential equations. Since
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the formulation introduces source terms, a predictor–corrector scheme is developed to solve
the system. First a sophisticated second-order Godunov method provides a solution that is
then modified to include the influence of the source terms. The Miller and Colella [23]
scheme begins by forming van Leer limited gradients of the cell-centred variables, namely
density, velocity, specific internal energy, the inverse of the deformation gradient, the plastic
deformation tensor, a work hardening parameter, and the components of the Cauchy stress. A
Riemann problem is then formed at the edge of a cell from the exact solution of the linearised
equations. The Riemann problem is approximated using the eigenvectors of the coefficients
of the linearised one-dimensional equations and preliminary conservative updates of the
cell-centred variables are obtained. The final solution at time level (n+ 1) is then obtained
with modification of the preliminary updates due to the presence of the source terms.

The present work differs from these previous studies in that operator splitting is used in
order to avoid the additional complexities associated with inclusion of material strength in
the Riemann problem. Since the total stress tensor conveniently decomposes into a devia-
toric stress tensor, responsible for the strength of the material, and an isotropic hydrostatic
pressure, the system of governing equations can readily be solved sequentially in time. The
technique employed here is similar to the schemes discussed in Yanenko’s method of frac-
tional steps [46], which are often used in the solution of the Navier–Stokes equations (see
Armfield and Street [1]). Similar techniques, referred to as time-operator or convection–
diffusion split schemes, have been successfully employed to extend Godunov-type methods
to solve viscous flows (see Toro and Brown [35] and Battenet al. [4]). The authors believe
such an approach provides a sound foundation for the inclusion of more sophisticated
material models. The utilisation of a free-Lagrange mesh also distinguishes the present
study from traditional Lagrangian schemes such as presented by Caramanaet al. [7, 9].
The free-Lagrange mesh and cell-centred formulation also allows for general topology,
and arbitrary and automatically updated connectivity, without the problems of hourglassing
common to other Lagrangian staggered-mesh schemes (see Caramana [6] and Caramana
and Shashkov [8]).

The remainder of this paper is arranged thus: In the next section the numerical scheme,
the development of which has been the main thrust of this work, is presented. First the
governing equations are introduced, followed by a discussion of the decomposition of the
total stress tensor, the elastic–perfectly plastic model, and the equations of state employed.
The principle of time-operator splitting is discussed in Section 3.2 and the separate numerical
operators are described in the remainder of Section 3. In Section 4 a selection of calculations
are performed using our method, and these are compared to analytical solutions and results
obtained using alternative techniques. Finally, in Section 5 we present our conclusions.

2. GOVERNING EQUATIONS

2.1. Equations of Motions

The governing equations for a continuous two-dimensional, homogeneous, nonheat con-
ducting media are, in integral form,

∂

∂t

∫
V(t)

U dV +
∮

S(t)
n̂ · F dS= 0, (1)
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whereV(t) is a time-dependent control volume enclosed by the boundaryS(t), U is the
vector of conserved variables, andF is the flux vector. In the Lagrangian reference frame
these vectors are

U =
 1
ρu
ρE

 and F =
 −u
−σ
−u · σ

 , (2)

whereρ is the density,E is the total specific energy (E = e+ (u · u)/2), e is the specific
internal energy,σ is the total stress tensor, andu is the vector velocity. (1) and (2) provide
statements for the conservation of volume, momentum, and energy. In the Lagrangian refer-
ence frame, since no mass is exchanged between individual control volumes, the continuity
equation in its usual form becomes redundant and is therefore replaced with an expression
for the conservation of volume. For a material exhibiting strength the total stress can be
decomposed into a hydrostatic, isotropic pressurep and a deviatoric stress tensors, such
that

σ = −pI + s, (3)

whereI is the unit tensor ands is the deviatoric stress tensor constructed thus—

s=
[

sx sxy

sxy sy

]
, (4)

wheresx, sy are the direct stresses andsxy is the shear stress. Such a decomposition of the
total stress tensor leads to a convenient formulation of the governing equations,

∂

∂t

∫
V(t)

U dV+
∮

S(t)
n̂ · FhydrodS+

∮
S(t)

n̂ · FstrendS= 0, (5)

whereFhydro andFstren are fluxes dependent on the hydrostatic pressure and on the state of
deviatoric stress in the material, respectively. These fluxes are

Fhydro=
−u

pI
up

 and Fstren=
 0
−s
u · s

 . (6)

Alternatively, utilising operator splitting, (5) becomes the two separate subproblems

∂

∂t

∫
V(t)

U dV +
∮

S(t)
n̂ · FhydrodS= 0 (7)

and

∂

∂t

∫
V(t)

Ũ dV +
∮

S(t)
n̂ · FstrendS= 0. (8)

In the scheme developed here (7) and (8) are solved sequentially in time using a time-
operator splitting procedure to be described in Section 3; henceŨ signifies an intermediate
value of the vector of conserved variables resulting from the solution of (7) alone. In order
to complete the description, a material model is required consisting of a constitutive model
relating deformation to the state of deviatoric stress and an equation of state to quantify
volumetric response.
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2.2. Elastic–Perfectly Plastic Solid

Using the generalised Hooke’s law [42], the relationship between stressσ and strainε
for a continuous isotropic material in the principal directions (1, 2, 3) is

σ1 = λε + 2µε1

σ2 = λε + 2µε2 (9)

σ3 = λε + 2µε3,

whereε = ε1+ ε2+ ε3 is the volumetric strain andλ andµ are the constants of Lam´e.
Furthermore,

µ = G, λ = νE

(1+ ν)(1− 2ν)
, (10)

whereG is the shear modulus,E is Young’s modulus, andν is Poisson’s ratio. Transforming
between principal stress space and an orthogonal Cartesian (x, y) coordinate system and
simplifying to two dimensions, Hooke’s law yields

σx = λε + 2µεx

σy = λε + 2µεy (11)

τxy = µεxy,

whereσx, σy, εx, εy are the normal stresses and strains in thex andy directions, respectively;
τxy andεxy are the shear stress and strain; andε = εx + εy + εz = ε1+ ε2+ ε3 since the sum
of the longitudinal strain components is invariant with the transformation of the coordinate
axes. Moreover, sincėσx = − ṗ+ ṡx and the hydrostatic pressure can be defined as the mean
of the three stressesp = −1/3(σx + σy + σz), the deviatoric stress can be represented

ṡx = 2µε̇x − 2

3
µ(ε̇x + ε̇y + ε̇z), (12)

sinceσ̇x = λė+ 2µε̇x, where the dot denotes a time derivative along a particle path. Thus,
Hooke’s law can be written is terms of differential deviatoric stress,

ṡx = 2µ(ε̇x − v̇/3v)
ṡy = 2µ(ε̇y − v̇/3v) (13)

ṡxy = µε̇xy,

where, from a consideration of continuity,

v̇

v
= ε̇x + ε̇y + ε̇z, (14)

wherev denotes the specific volume. Hence, (13) completely describes the state of deviatoric
stress for an elastic, two-dimensional, isotropic material as a function of its deformation.
To model an elastic–plastic material an additional yield condition is required which defines
the material elastic limit and hence determines when plastic flow occurs. For the present
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work, the von Mises yield condition has been employed, which can be written in terms of
the principal stresses,

(σ1− σ2)
2+ (σ2− σ3)

2+ (σ3− σ1)
2 = 2(Y0)2, (15)

whereY0 is the yield strength of the material in simple tension. With transformation into
the two-dimensional Cartesian (x, y) coordinate system, and using (3), the yield condition
can be written as

s2
x + s2

y + 2s2
xy ≤

2

3
(Y0)2, (16)

and it is this expression which is used to detect the onset of plastic flow. In the numerical
scheme discussed in this work, once yield is detected the material is assumed to flow plas-
tically, resisting with a constant state of deviatoric stress; hence the term elastic–perfectly
plastic. Finally, an equation of state relating the pressure to density and internal energy is
required to complete the material model.

2.3. Equation of State

Two equations of state (EOS) have been employed in the present work; the ‘stiffened
gas’ EOS (see Tyndall [39], Harlow and Amsden [16], and Weixen [43]) and the quadratic
Osborne EOS (see Riney [28]). The ‘stiffened gas’ EOS is a simplification of the more
general Mie–Gr¨uneisen EOS. It provides a fair approximation to the behaviour of solids,
providing that the departures from the reference density are slight, and has the form

p = c2
0(ρ − ρ0)+ (γ0− 1)ρe, (17)

wherec0 is the unshocked sound speed,ρ0 is a reference density,e is the specific internal
energy, andγ0 is the Grüneisen gamma. The Osborne EOS has the form

posb= a1η + āη2+ E′(b0+ b1η + b2η
2)+ E′2(c0+ c1η)

E′ + e0
, (18)

whereη = ρ/ρ0− 1, E′ = eρ0, and

ā =
{

a2, η ≥ 0

a∗2, η < 0.
(19)

For the Osborne EOS, a minimum pressure is imposed such that the actual pressure is
taken asp = max(pmin, posb), wherea1,a2,a∗2, b0, b1, b2, c0, c1, e0, andpmin are material-
dependent parameters. All that remains in the constitutive model is to obtain an expression
for the local sound speed in the material for each EOS. Recalling that for all equations of
state,

c2 =
(
∂p

∂ρ

)
e

+ p

ρ2

(
∂p

∂e

)
ρ

, (20)
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therefore for the ‘stiffened gas’ EOS an expression for the sound speed can easily be derived
thus:

c2 = c2
0 + (γ0− 1)

[
e+ p

ρ

]
. (21)

And for the Osborne EOS, following some differentiation,(
∂p

∂ρ

)
e

= a1+ 2āη + E′(b1+ 2ηb2+ E′c1)

ρ0(E′ + e0)
(22)

and (
∂p

∂e

)
ρ

= ρ0(b0+ b1η + b2η
2+ 2E′(c0+ c1η)− p)

E′ + e0
. (23)

Thus, the material model for two-dimensional, elastic–perfectly plastic flow employed here
can be summarised as:

(i) decomposition of total stress

{
σx = −p+ sx

σy = −p+ sy,

(ii) differential stress-strain relationships


ṡx = 2µ(ε̇x − 1

3
v̇
v
)

ṡy = 2µ(ε̇y − 1
3
v̇
v
)

ṡxy = µε̇xy

, (24)

(iii) von Mises yield conditions2
x + s2

y + 2s2
xy ≤ 2

3(Y
0)2,

(iv) flow rule—(perfectly plastic), and

(v) equation of statep = p(ρ, e).

In the next section the numerical procedure for implementing the material model is dis-
cussed.

3. NUMERICAL SCHEME

3.1. General Details

The numerical scheme described in this work is based on the two-dimensional compu-
tational fluid dynamics (CFD) codeVucalm, developed by Ball [2] for the solution of the
unsteady, compressible Euler equations on an unstructured Lagrangian, finite-volume mesh.

At the beginning of a calculation a two-dimensional domain is defined which is filled with
computational ‘particles.’ Associated with each particle is a material type, with appropriate
material properties, the particle position (x, y), and the material conditions at that position.
Based entirely on the particle positions, a Voronoi mesh is constructed which describes a
unique tessellation of the domain using nonoverlapping polygonal cells. The Voronoi dia-
gram is the geometric dual of the more commonly known Delaunay triangulation [13, 27].
Each cell encloses a single particle and contains the region on the computational plane
closest to that particle, forming an associated material ‘packet.’ Mass exchange between
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cells is forbidden, hence mass is conserved exactly at all times. The cells form the com-
putational control volumes for the time integration of the governing equations. Once the
material velocities, stored at the particle positions, are known at the new time level, they
can be integrated in time to obtain the new particle positions. Hence the particles move
in a purely Lagrangian fashion and are a permanent feature of a calculation. In contrast,
the Voronoi mesh is ephemeral and may be reconstructed as often as desired, allowing the
mesh connectivity to evolve freely in response to material deformation. In highly shearing
materials the mesh may be reconstructed on every timestep or, in order to minimise CPU
time, the user may opt to reconstruct less frequently (perhaps every 5 timesteps). During
intervening timesteps the existing mesh vertices are convected at the local material velocity.

It is important to note at this juncture that it is a common misconception that reconstruction
of the computational mesh introduces diffusion or a loss of conservation. Since all fluxes
are conservative, and mass exchange between cells is forbidden, the quantities of mass,
momentum, and energy are always conserved. Furthermore, the mesh reconstruction, unlike
more common strategies such as ALE, involves no exchange of any property between
individual cells; it merely constitutes an update of the local connectivity of the mesh and
the estimated locations of the cell boundaries.

3.2. Solution Procedure

Utilising a time-operator splitting procedure the integration of the solution from time level
tn to tn+1 consists of two sequential steps. In the first ‘hydrodynamic’ step, (7) is solved,
thus advancing the vector of conserved variables to an intermediate time level utilising a
spatially second-order Godunov solver, i.e.,

Un→ Ũ. (25)

Note that throughout this discussion the tilde overbar (∼) represents intermediate solutions
resulting from the hydrodynamic step. During this initial step the material is assumed to
be without strength and the state of stress at time leveltn has no influence. In the second
‘deviatoric’ step the velocities from the intermediate solution are used to form velocity
strains in order to integrate the differential stress–strain relations (13) and hence obtain a
provisional update of the deviatoric stress tensors, i.e.,

sn→ s̄, (26)

where the plain overbar (−) indicates a provisional state resulting from the deviatoric step.
A definitive update of the conserved variables is then obtained using the provisional state
of deviatoric stress̄s. Finally, time-centred velocity strains, formed from an average of
velocities at time levels̃t andtn+1, are used to obtain a definitive update of the cell-centred
deviatoric stress. This completes the timestep. The individual hydrodynamic and deviatoric
operators are discussed in detail in the following sections.

3.3. Hydrodynamic Operator

The time stepping of (7) differs very little from that of a comparable Euler solver. Fol-
lowing Ball [2], the dependent variables at time leveltn and at the intermediate level are
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related thus—

Ũ = ρ̃

ρn

(
Un − ρ

n1t

m

K∑
k=1

n̂k · Fn
hydrok

Sk

)
, (27)

wherem is the control volume mass,1t the timestep, and the subscriptk indicates thekth
side of the control volume. Thus,Fhydrok

, Sk, andn̂k are the numerical flux, the side length,
and the outward pointing normal vector, respectively, for thekth side of the computational
cell. The density update is obtained by applying volume conservation as

ρ̃ =
(

1

ρn
+ 1t

m

K∑
k=1

u∗kSk

)−1

, (28)

since

Ṽ = Vn +1t
K∑

k=1

u∗kSk, (29)

whereV is the computational cell volume andu∗k is the normal velocity directed out of the
control volume. In (27), the numerical flux is required on each side of the computational
cell and is formally found fromFhydrok = AF∗k, where

A =

 n̂k 0 0

0 I 0

0 0 n̂k

, F∗k =

 −u∗k
p∗k

u∗k p∗k

, (30)

where the superscript∗ indicates wave-processed states at the cell boundary. These are ob-
tained from the solution to the Riemann problem formed at thekth control volume side. Note
that for a Lagrangian mesh, the cell boundary is coincident with the contact surface of the
local Riemann problem, and hence the values ofu∗k, p∗k are always determined at the contact
surface. This represents a significant simplification relative to Eulerian Godunov schemes
in which the cell boundary may lie anywhere within the local wave system, depending upon
the local velocity and wave speeds.

The Riemann problem is an initial value problem with left (l ) and right (r ) input states con-
structed from an interpolation of the cell-centred primitive variables assuming a piecewise-
linear reconstruction within each cell. Required inputs are densityρl ,r , pressurepl ,r , and
velocity normal to the cell faceul ,r . In order to ensure monotonicity, the gradients of primi-
tive variables are limited using a MUSCL-based approach (see Ball [2] for algebraic details).

In the present work, the two nonlinear waves present in the Riemann solution are both
assumed to be shock waves, and the Riemann solver of Dukowicz [11] has been employed
to calculate the wave-processed statesu∗ and p∗. For a discussion of the two-shock ap-
proximation in the solution of the Riemann problem, see Toro [36]. The Dukowicz solver
is attractive for this type of application because it provides an approximate noniterative
Riemann solution for a broad class of materials characterised simply by the slope of the
shock Hugoniot and the local sound speed. Though the exact solution for the stiffened gas
EOS is readily obtainable (see Cocchiet al. [10] and Plohr [26]), it is felt that this approxi-
mate solver provides scope for the incorporation of more realistic EOS in the future. For
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example, provided that an expression for the local sound speed can be obtained, there is no
reason why a more accurate version of the Mie–Gr¨uneisen EOS cannot be employed (see
Gust [14] and Steinberget al. [31]).

Once (27) and (28) have been used to obtain the intermediate values of the conserved
variables, the particle positions can be updated by integrating the intermediate velocityũ.
The intermediate conserved variable vector,Ũ, and the particle positions are now ready to
form the initial conditions for the deviatoric step.

3.4. Deviatoric Operator

The deviatoric operator can be conveniently divided into three distinct stages which are
discussed in the following sections.

3.4.1. Stage 1: Predicted Cell-Centred Stress

The first stage of the deviatoric operator is to obtain a cell-centred prediction of the state
of deviatoric stress in each control volume based on the intermediate hydrodynamic update
Ũ. Numerically, (13) can be integrated in time to give a predicted state of deviatoric stress,

s̄x = sn
x +

[
2µ

(
ε̇x − 1

3
ε̇

)
+ δx

]
1t

s̄y = sn
y +

[
2µ

(
ε̇y − 1

3
ε̇

)
+ δy

]
1t (31)

s̄xy = sn
xy+ [µε̇xy+ δxy]1t,

where the velocity gradients yield the strain rates thus (see Wang [42]):

ε̇x = ∂ũ

∂x
, ε̇y = ∂ṽ

∂y
(32)

ε̇xy = ∂ũ

∂y
+ ∂ṽ
∂x
, ε̇ = ∂ũ

∂x
+ ∂ṽ
∂y
.

Here the velocity is assumed to vary linearly within each computational cell. Estimates of
the velocity gradients for a given cell are obtained by fitting a plane surface to the cell-
centred velocities of theK neighbouring cells, by least-squares, with the squared-error for
each neighbour weighted by the shared side lengthSk. Note that in (31), the additional
termsδx, δy, andδxy appear. During two-dimensional displacement a material element may
experience rotation in addition to distortion. Any rigid body rotation should not change
the state of stress of the element but will constitute a transformation or redistribution of
the deviatoric stress components. Thus, to ensure the stress–strain relationship remains
independent of rigid body motion, the additional rigid body correction terms are introduced
to allow for the coordinate transformation (see Wilkins [45]). The components of stress in
an arbitrarily orientated orthogonal coordinate system (x′, y′) may be related to those in the
(x, y) system by the transformation formulae

sx′ = sx cos2ω + sy sin2ω − sxy sin 2ω

sy′ = sx sin2ω + sy cos2ω + sxy sin 2ω (33)

sx′y′ = 1

2
(sx − sy) sin 2ω + sxy cos 2ω.
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Therefore, if a body is rotated through an angleω in the (x, y) plane during the timestep, the
correction must be equal to the difference between the transformed stresses and the original
stresses,

δx = sx′ − sx

δy = sy′ − sy (34)

δxy = sx′y′ − sxy.

The rotation angleω is obtained from an estimate of the vorticity of the material given by

sinω = 1

2

[
∂ṽ

∂x
− ∂ũ

∂y

]
1t. (35)

Hence, at the end of Stage 1 a predicted state of deviatoric stress is available at particle
positions throughout the computational domain. Next, this state of stress must be allowed
to influence the conserved variables in each control volume.

3.4.2. Stage 2: Material Strength Flux Calculation

In order to determine the strength fluxFstren, the state of deviatoric stress must be estimated
at each cell face. Consider a given ‘target’ cell, with neighboursk = 1..K (see Fig. 1). The
predicted deviatoric stresses̄sx, s̄y, s̄xy obtained in Stage 1 are assumed to vary linearly
within each cell, with gradients obtained by least squares. The numerical flux on thekth
face is constructed from an average of the predicted stress state linearly interpolated from
the target (subscriptT ) and neighbour particle positions and then orientated to the face
coordinate system—see Fig. 1. The average stress states are obtained from

s̄xavg =
1

2

(
s̄EI

xT
+ s̄EI

xk

)
, s̄yavg =

1

2

(
s̄EI

yT
+ s̄EI

yk

)
, s̄xyavg =

1

2

(
s̄EI

xyT
+ s̄EI

xyk

)
, (36)

FIG. 1. Schematic illustrating the construction of edge-orientated normal and shear stresses for thek = 1
neighbour.snnk is the normal deviatoric stress directed out of the ‘target’ cell, normal to the midpoint of the cell
face shared with thek = 1 neighbour.sttk is the shear stress acting tangential to the cell face, counterclockwise
around the target cell.θk is the angle between the cell face and the positivex-axis.
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where the edge interpolated states (superscriptEI) are formed

s̄EI
xT
= s̄xT +

∂ s̄xT

∂x
1xT k + ∂ s̄xT

∂y
1yT k, s̄EI

xk
= s̄xk +

∂ s̄xk

∂x
1xkT + ∂ s̄xk

∂y
1ykT

s̄EI
yT
= s̄yT +

∂ s̄yT

∂x
1xT k + ∂ s̄yT

∂y
1yT k, s̄EI

yk
= s̄yk +

∂ s̄yk

∂x
1xkT + ∂ s̄yk

∂y
1ykT (37)

s̄EI
xyT
= s̄xyT +

∂ s̄xyT

∂x
1xT k + ∂ s̄xyT

∂y
1yT k, s̄EI

xyk
= s̄xyk +

∂ s̄xyk

∂x
1xkT + ∂ s̄xyk

∂y
1ykT,

where, for example,
∂ s̄xT
∂x ,

∂ s̄xk
∂x are the Cartesian gradients of the predicted deviatoric stresses

in the target andkth neighbour cells, respectively. Here the displacements from the target
and thekth neighbour, to the face midpoint, are

1xTk = xmp− xT , 1yTk = ymp− yT
(38)

1xkT = xmp− xk, 1ykT = ymp− yk,

where(x, y)mp, (x, y)T , (x, y)k are the positions of the face midpoint, the target particle,
and thekth neighbour, respectively.

The interpolated stress components are transformed into components normal and parallel
to the cell face, using

snnk = s̄yavg cos2 θk + s̄xavgsin2 θk − s̄xyavgsin 2θk
(39)

sttk =
1

2

(
s̄xavg − s̄yavg

)
sin 2θk + s̄xyavgcos 2θk,

whereθk is the angle between the face and the positivex-axis. Thus a definitive conservative
update of the conserved variables can be obtained from

Un+1 = ρ̃

ρn

(
Ũ− ρ

n1t

m

k∑
k=1

n̂k · Fn
strenk

Sk

)
, (40)

where the strength flux is formally constructed as

Fstrenk =


0

−nxsnnk + nysttk

−nysnnk − nxsttk

−u∗ksnnk − uttsttk

, (41)

wherenx andny are thex- and y-wise components of the unit normaln̂k on thekth cell
face andu∗k andutt are the velocities normal and tangential to the cell face. Hereu∗k comes
from the Riemann solution calculated in the hydrodynamic operator andutt from a linear
interpolation of the local particle velocities. Note that on the current time step, material
strength has no influence on the update of density, and henceρn+1 = ρ̃. However, the
deviatoric operator does change the momentum and energy of the particle. These changes
will modify the Riemann problem to be solved in the(n+ 1)th timestep, which will in turn
influence the particle density. Having obtained a final update of the conserved variables, the
definitive update of the cell-centred deviatoric stress can now be computed.
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3.4.3. Stage 3: Definitive Cell-Centred Stress Update

The definitive cell-centred update of deviatoric stress is calculated in a fashion similar to
that of the predicted stress (as described in Section 3.4.1), except that the strain rates and
rigid body corrections are now time-centred (superscriptTC) with respect to the deviatoric
operator,

sn+1
x = sn

x +
[
2µ

(
ε̇TC

x −
1

3
ε̇TC

)
+ δTC

x

]
1t

sn+1
y = sn

y +
[
2µ

(
ε̇TC

y −
1

3
ε̇TC

)
+ δTC

y

]
1t (42)

sn+1
xy = sn

xy+
[
µε̇TC

xy + δTC
xy

]
1t,

where

ε̇TC
x =

1

2

(
∂ũ

∂x
+ ∂un+1

∂x

)
, ε̇TC

y =
1

2

(
∂ṽ

∂y
+ ∂v

n+1

∂y

)
ε̇TC

xy =
1

2

(
∂ũ

∂y
+ ∂un+1

∂y

)
+ 1

2

(
∂ṽ

∂x
+ ∂v

n+1

∂x

)
(43)

ε̇TC = 1

2

(
∂ũ

∂x
+ ∂un+1

∂x

)
+ 1

2

(
∂ṽ

∂y
+ ∂v

n+1

∂y

)
.

Hallquist has shown [15] that the time-centred strain rate is preferred for large deformation
simulations, not only because it closely agrees with the true strain, but also because it avoids
the erroneous calculation of nonzero strain rates during rigid body rotation.

Before the state of deviatoric stress calculated from (42) is accepted as the final stress
state it must be tested against the yield condition. The von Mises yield condition, (15), is
used in this work and is implemented using the method of radial return due to Wilkins [45].
The steps to impose the yield condition are:

(i) Compare the state of deviatoric stress with the yield condition. Ifs2
x + s2

y + 2s2
xy ≤

2/3(Y0)2 then response is elastic and this is the final state of stress. Ifs2
x + s2

y + 2s2
xy >

2/3(Y0)2 then material has yielded and flow is plastic; move to step (ii).
(ii) Radially rescale each stress component to lie on the yield surface by multiplying by

the rescaling factor,

√
2/3Y0√

s2
x + s2

y + 2s2
xy

. (44)

All that remains is to integrate the velocities to obtain new particle positions,

xn+1 = xn + 1t

2
(un + un+1), yn+1 = yn + 1t

2
(vn + vn+1), (45)

and to either convect or reconstruct the computational mesh for the beginning of the next
timestep.
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3.5. Treatment of Void Regions

Hydrocodes are often required to simulate problems, such as hypervelocity impact, in
which the region surrounding the deforming projectile and target is a void (vacuum), or
may be approximated as such. The way in which the void region is represented may be
a significant issue in the design of an appropriate numerical scheme. In addition, the free
surface of the deforming material will typically display large distortions. Mesh entanglement
would normally terminate a fixed-connectivity Lagrangian calculation before large free
surface distortions are reached. Problems also arise in ALE simulations if free surfaces ‘roll-
up’ or turn back on themselves. Therefore, to simulate problems involving highly deforming
free surfaces, Eulerian or SPH methods have generally been used in the past. In an Eulerian
calculation, void regions are defined through which the materials of interest can convect.
In contrast, the particle-based SPH technique does not require an enclosing computational
mesh or grid and hence there is no requirement to explicitly represent void regions.

In the free-Lagrange scheme developed here, the materials of interest must always be
enclosed within a global computational domain. Consequently, additional computational
particles are required within the void region to ensure the computational mesh always fills
the complete domain. Free surfaces are always coincident with cell boundaries between the
additionalvoid particlesand those particles which constitute the materials of interest. The
void particles are designed such that the materials of interest behave as if they are enclosed
within a vacuum. Void particles are assigned a nonzero fictitious mass and an EOS, usually
the same as the materials of interest, and are described by the same governing equations, (1)
and (2), but with zero material strength, i.e.,s= 0. Thus, only the hydrodynamic operator is
required to describe the evolution of the void particles, and the standard solution procedure
may be used, except at cell boundaries between the materials of interest and void particles.

In order for solid materials to behave as if enclosed within a vacuum, the following
criteria must be fulfilled at solid/void cell boundaries:

(i) Void particles must have no influence on gradient estimates within computational
cells containing solid material, and vice versa.

(ii) Void particles must do no work on, and impose no forces on, adjoining solid
particles.

(iii) Movement of void particles must be such as to minimise the ‘volumetric error’ (see
below) in adjoining solid particles.

For particles on a solid/void boundary, criterion (i) is met by simply excluding void parti-
cles when performing both gradient construction and slope limiting for solid particles, and
vice versa. In order to satisfy criteria (ii) and (iii), modifications to the associated Riemann
problems, and consequently the calculated flux (30), are required. It is important to note that
different Riemann problems are solved at solid/void boundaries, depending on whether the
target particle is solid or void, and hence at these boundaries the hydrodynamic fluxFhydrok

is not conservative. However, this is not of practical concern, since the thermodynamic
volume, momentum, and energy are always accurately conserved within the materials of
interest—conservation violations are restricted to the fictitious void particles.

To satisfy criterion (ii), no force must be allowed to act on cell faces shared between
solid and void cells from the perspective of the solid cell. Hence, when evaluatingF∗ in
(27) for a solid cell at a solid/void boundary, the wave-processed states are taken as simply
u∗ = usolid andp∗ = 0; i.e., the cell face is assumed to experience zero pressure and move
at the velocity normal to the face interpolated from within the solid. Also, zero deviatoric
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stress is applied at the solid/void boundaries in the construction of the strength flux,Fstrenk in
(40). These two measures ensure that no work is done by the void particles on the solid and
that no forces are applied. The modified Riemann problem solved between void and solid
cells, from the perspective of the void cell, in order to meet criterion (iii), is described below.

The ‘thermodynamic volume’ of a computational particle is given byVthermo= ρ/m
whereρ,m are the density and mass of the particle, respectively. The area of the cor-
responding cell (multiplied by unit length) gives a ‘geometric volume’ (Vgeom), which is
simply a function of the spatial distribution of particles in the domain and the definition
of the Voronoi tessellation. Ideally one should haveVthermo= Vgeom, but in practice this
relationship is only approximately obeyed. The difference between the geometric and ther-
modynamic volume can be quantified by calculating a ‘volumetric error,’

volumetric error (VERR)%= Vgeom− Vthermo

Vthermo
× 100%. (46)

Experience has shown that solid particles at free surfaces are prone to develop significant
values ofVERR (volumetric errors of up to 40% have been noted in cells at free surfaces in
shell collapse simulations whereVERR was not controlled). Since free surfaces are defined
by the position of the cell boundaries between solid and void particles, volumetric errors
at free surfaces must be controlled if accurate predictions of free surface location are to be
obtained. In addition, althoughVgeomis not explicitly used in our scheme, geometric errors
imply errors in the cell side lengthsSk which have a direct impact on the magnitude of
intercell fluxes. Moreover, volumetric errors for a solid cell at a free surface will change the
aspect ratio of the cell and modify the influence of its cell-centred stress in Stage 2 of the
deviatoric operator (see Section 3.4.2). The control of volumetric error essentially requires
that the spacing between the solid particles and their void neighbours be regulated by the
exertion of some correcting influence on the motion of the void particles. If a solid particle
has a positiveVERR (cell too large) then the neighbouring void particle needs to be moved
closer, and vice versa. Provided this correction is applied only to void cells, no conservation
error is introduced in the solid material.

The correction is achieved by a modification of the input states to the Riemann problem
formed between void and solid cells when forming the hydrodynamic fluxFhydrok

from the
perspective of the void cell. Essentially, void particles experience the cell face formed with
the solid cell as a moving one-dimensional piston. Thus the input states at the boundary for
the solid(ρsolid, usolid, psolid) are specified as

ρsolid = ρvoid, usolid = 2.0(upiston+ δupiston)− uvoid, psolid = pvoid, (47)

whereρvoid, uvoid, pvoid are states interpolated to the boundary from within the void,upiston is
interpolated from within the solid, andu is taken as positive toward the solid. The quantity
δupistonrepresents an adjustment to the piston velocity which is used to control the volumetric
error and is calculated as

δupiston= HVERR, H = C × characteristic cell dimension

characteristic flow time
, (48)

where C is a constant to be selected by the user. In practice we have found that the so-
lution is insensitive to the value ofC over a wide range. For the beryllium shell problem
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(see Section 4.2)H was taken as

H = 20× typical cell diameter

stopping time
. (49)

Using this method, the volumetric error at the shell surface was maintained at less than 1%
throughout the simulation. It should also be noted that this technique does not specifically
introduce any restriction on the size of the stable timestep for the overall scheme. The size
of the stable timestep, however, can be controlled by particle pairs in the void regions as it
can anywhere else in the calculation, since a flow calculation is still required in the void.

4. NUMERICAL EXAMPLES

4.1. Introduction

In order to illustrate the effectiveness of our technique, three simulations are presented.
The first comprises the collapse of a cylindrical beryllium shell following initialisation with
a radial velocity directed towards its centre. Next, the shock-capturing properties of the
scheme are investigated by simulating wave structures generated during a moderate-velocity
impact on a semi-infinite aluminium target. Finally, the large deformation capabilities of the
scheme are investigated with the simulation of a high velocity impact. Material properties
utilised in the three simulations are listed in Table I (here shock Hugoniot data is taken from
[48]). Where appropriate, the results obtained using the technique are compared to those
using the commercial AUTODYN-2D software. AUTODYN-2D [5] is a nonlinear transient
dynamic analysis program which offers several solvers including both fixed-connectivity
Lagrangian and meshless Lagrangian SPH solvers. Validation of our scheme is additionally
obtained by comparing the shell collapse simulation with an analytical solution.

4.2. Collapse of Thick-Walled Cylindrical Beryllium Shell

This problem simulates the collapse of a cylindrical beryllium shell in a vacuum when
subjected to an initial radial velocity directed towards its centre. As a consequence of radial
convergence, the shell will thicken during collapse, and its kinetic energy is irreversibly
converted to internal energy through the dissipative plastic distortion mechanism. The col-
lapse terminates at a ‘stopping radius,’ which is a function of the initial conditions. This

TABLE I

Material Properties for Aluminium, Steel, and Beryllium

Property Aluminium Steel Beryllium

Density,ρ (kgm−3) 2785 7900 1845
Bulk sound speed,c0 (ms−1) 5328 4600 ∗∗∗∗a

Particle-shock velocity slope,S 1.338 1.490 1.124
Grüneisen parameter,γ 2.00 2.17 ∗∗∗∗a

Shear modulus,G (kPa) 2.760× 107 8.530× 107 15.100× 107

Yield stress,Y0 (kPa) 0.300× 106 0.979× 106 0.330× 106

a ∗∗∗∗ denotes properties not required for the Osborne EOS. Additional parameters for the
Osborne EOS can be found in the text.
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problem presents an interesting challenge for a free-Lagrange hydrocode. Key criteria for a
successful simulation are that (i) the computational mesh retains circumferential symmetry
and (ii) the scheme accurately predicts the stopping radius. This problem is a modification
of that of Verney [41] who experimentally studied the collapse of spherical uranium shells.

4.2.1. Initialisation

The shell is initially 20 mm thick with an internal radius of 80 mm. Relevant material
properties for beryllium are listed in Table I. The Osborne EOS is used, with the following
parameter values:

a1 = 0.951168, a2 = 0.345301, a∗2 = −0.345301,

b0 = 0.926914, b1 = 2.948420, b2 = 0.507979,

c0 = 0.564362, c1 = 0.620422, e0 = 0.800000,

ρ0 = 1.845, pmin = −0.10.

Note that these parameters are given in the (gm, cm,µs) unit system and hence the calculated
pressure is in units of Mbar and sound speed in units of cm/µs.

From a consideration of the governing equations in cylindrical coordinates, ignoring
elastic effects and compressibility of the shell material, the initial radial velocity at the
inner surface,u0, required to produce an inner stopping radius ofr ′0 is (see the Appendix)

u0 =
√

2Y0F(α, λ)√
3ρ ln(R1/R0)

, (50)

whereR0 andR1 are the initial inner and outer radii and the functionF(α, λ) has the form

F(α, λ) =
∫ 1

λ

x ln

(
1+ 2α + α2

x2

)
dx, (51)

where

α = R1− R0

R0
, λ = r ′0/R0, x = r0(t)/R0, (52)

andr0(t) is the dynamic inside radius. The numerical integration of the functionF(α, λ),
for a range of values ofα, is shown in Fig. 2. Furthermore, the outer stopping radiusr ′1 can
be related to the initial inner surface velocity via

F(z, ξ) = u2
0

√
3

2

R2
0

R2
1

ρ

Y0
ln

R1

R0
, (53)

where

F(z, ξ) =
∫ 1

ξ

z ln

(
z2R2

1

R2
0 − R2

1 + z2R2
1

)
dz, ξ = r ′1/R1, z= r1(t)/R1. (54)

For the present shell configuration,α = 0.25. Three simulations have been performed, with
inner stopping radii selected asr ′0 = 50, 45, and 40 mm, respectively. The initial velocity
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FIG. 2. Numerical integration of the functionF(α, λ) for a variety of values ofα = (R1 − R0)/R0. R0 and
R1 are the initial inside and outside radii andr ′0 is the inner stopping radius.

u0 required at the shell inner face for these collapses, and the associated outer stopping
radii, as predicted by the above analysis, is given in Table II. Each of the three shell collapse
calculations were initialised by constructing a full 360-degree circumferentially symmetric
distribution of both beryllium and void particles such that the initial Voronoi diagram
provides the desired shell dimensions—see Fig. 5a. The stiffened gas EOS was chosen
to describe the void particles, with material properties taken as those of aluminium—see
Table I. Aluminium properties were chosen because aluminium has a lower compressibility
than beryllium and hence the timestep is not excessively restricted by the central core of
void particles as they are compressed by the collapsing shell.

Mesh resolution is the same for each collapse. The shell is represented by 20 rings of
particles, equally spaced in the radial sense, each ring containing 256 particles. The mesh
comprises a total of 13,937 particles, 8,817 of which fill the void regions. To initiate a
collapse, the particles representing the shell are given an initial radial velocityu(r ) which,
assuming incompressible flow, is obtained simply from

ur = R0

r
u0. (55)

TABLE II

Theoretical Collapse Parameters for the Cylindrical Beryllium Shell,

as a Function of the Inner Stopping Radiusr′0

r ′0 (mm) r ′0/R0 F(α, λ) u0 (ms−1) F(z, ξ ) r ′1 (mm)

50 0.6250 0.187946 417.1 0.120298 78.10
45 0.5625 0.223336 454.7 0.142933 75.00
40 0.5000 0.259727 490.2 0.166159 72.12
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FIG. 3. Energy time histories for the three beryllium shell collapses:r ′0 = 50, 45, and 40 mm. Shown are
internal and kinetic energy histories for the free-Lagrange solverVucalm-EP(dashed line) and the AUTODYN
fixed-connectivity solver (solid line).

A CFL number of 0.4 is used in timestep control, and since the relative distortion of the
material is low, the computational mesh is fully reconstructed on only 1 timestep in 10.

4.2.2. Discussion

For the three collapses the time histories of the energy distribution and of the inner,
middle, and outer radii are plotted in Figs. 3 and 4, respectively. The inner and outer shell
radii are calculated as an average of the vertex positions of the computational mesh on
solid/void boundaries for the complete shell circumference. The middle radiusrm similarly
tracks a material surface which is initially located atRm = (R0+ R1)/2.

Figure 3 shows the nearly identical energy time histories for each collapse for both the
free-Lagrange solverVucalm–EPand the AUTODYN-2D fixed-connectivity Lagrangian
solver. In each case the initial kinetic energy of the shell is converted into internal energy
as irreversible plastic work is done. Total energy is accurately conserved in both schemes.
In the early stages of the collapses the material distortion is purely plastic, but as a larger
percentage of the initial kinetic energy is dissipated, portions of the shell enter the elastic
regime. Eventually, an approximate state of rest is reached after which no further perma-
nent plastic distortion occurs, but the shell maintains a small-amplitude elastic oscillation.
This residual motion is not accounted for in the theoretical analysis, in which pure plastic
behaviour has been assumed. Therefore, in order to compare the simulated shell behaviour
with theory, the stopping time is taken as the period required for 99.9% of the initial kinetic
energy to be converted to internal energy. Table III gives the stopping times for the simula-
tions, together with the percentage errors for the inner and outer stopping radii relative to
the theoretical values. Since the shell retains residual elastic motion the final stopping radii
are taken as the median radii for the first elastic oscillation. The scheme is seen to match
closely the theoretical stopping radii; agreement is to better than 1% in every case. From
the limited range of the three cases investigated here, the difference between the simulated
and theoretical radii appears to increase for the inner shell face and decrease for the outer
as the severity of the collapse is increased.

Time histories for the shell radii are illustrated in Fig. 4 and are seen to be in close
agreement with the AUTODYN-2D fixed-connectivity solver. Stopping times and deviations
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TABLE III

Beryllium Shell Collapse Results for the Free-Lagrange Solver

Final radius Initial kinetic energy Stopping timea Inner radius Outer radius
r ′0 (mm) (MJ) (ms) error (%)b error (%)b

50 1.4401 127.8 −0.024 −0.662
45 1.7114 133.6 +0.267 −0.625
40 1.9891 137.0 +0.853 −0.571

a Stopping time is the time taken for the shell to dissipate 99.9% of its initial kinetic energy.
b Inner and outer radius errors are relative to incompressible theory.

from the incompressible theory are shown in Table IV for the fixed-connectivity solver. The
recorded time for the shell to dissipate 99.9% of the initial kinetic energy is consistently
longer with the free-Lagrange technique, ranging from an increase of 0.95% for the 40-mm
collapse to 1.64% for the 50-mm collapse. Differences between the stopping radii and the
theoretical prediction are generally smaller than they are for the free-Lagrange solver. The
maximum deviation from the incompressible theory for the inside and outside radii were
recorded for the 40-mm collapse as 0.090% and 0.025%, respectively.

Table V compares the stopping radii for the two numerical techniques. Also included are
data characterising the degree of circumferential symmetry achieved by the free-Lagrange
solver at the end of the collapse. These data include the standard deviation of the normalised
particle radiusσ , which is determined as follows. First a mean radiusr̄ n is calculated for
each of the 20 circumferential ringsn = 1, . . . , N,

r̄ n = 1

I

I∑
i=1

r n
i , I = 256, N = 20, (56)

FIG. 4. Radius time histories for the three beryllium shell collapses (r ′0 = 50, 45, and 40 mm) for the free-
Lagrange solverVucalm-EP(dashed line) and the AUTODYN fixed-connectivity solver (solid line).r0, r1, and
rm are the inner, outer, and middle radii, respectively. Also shown are the inner and outer stopping radii obtained
from incompressible theory.
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TABLE IV

Beryllium Shell Collapse Results for the AUTODYN-2D

Fixed-Connectivity Lagrangian Solver

Stopping radius Stopping timea Inner radius Outer radius
r ′0 (mm) (ms) error (%)b error (%)b

50 125.7 +0.066 +0.023
45 131.4 +0.050 +0.018
40 135.7 +0.090 +0.025

a Stopping time is the time taken for the shell to dissipate 99.9% of its
initial kinetic energy.

b Inner and outer radius errors are relative to incompressible theory.

wherer n
i is the radial position of an individual computational particle in the shell. Normal-

ising with respect to this mean radius for each ring, the standard deviation for the particle
radii is calculated,

σ(%) =
√√√√ 1

N × I

I∑
i=1

N∑
n=1

(
r̃ n

i − 1
)2× 100%, r̃ n

i =
r n

i

r̄ n
. (57)

In addition, the minimum and maximum deviations from the mean radii are quoted for any
particle in the shell.

Agreement of the inner and outer stopping radii between the free-Lagrange and
AUTODYN-2D fixed-connectivity solvers is excellent: no difference exceeds 0.8%. The
preservation of circumferential symmetry, evident in the final mesh configurations illus-
trated in Figs. 5b, c, and d, is quantified by the standard deviation of the normalised
particle radius, which reaches a maximum of 0.038% for the 45-mm collapse. The maxi-
mum and minimum deviations from the mean radii are perhaps more informative. As one
might expect, the minimum and maximum deviations increase in magnitude as the final
stopping radius decreases, i.e., as the distance travelled by the computational particles in-
creases. In conclusion, the free-Lagrange simulation meets our two key criteria for this
test problem: circumferential symmetry is preserved, and the stopping radii are accurately
predicted.

TABLE V

Beryllium Shell Collapsea

Inner stopping Inner radius Middle radius Outer radius Standard Minimum Maximum
radius,r ′0 (mm) difference (%) difference (%) difference (%) deviationσ (%) deviation (%) deviation (%)

50 −0.090 −0.358 −0.685 0.0303 −0.0923 +0.1004
45 +0.244 −0.231 −0.643 0.0379 −0.1172 +0.1213
40 +0.762 −0.056 −0.596 0.0365 −0.1381 +0.1422

a Listed are comparisons for inner, middle, and outer stopping radii between the free-Lagrange and AUTODYN-
2D fixed-connectivity solvers. Also shown, as a measure of radial symmetry for the free-Lagrange simulations, are
standard deviations of a normalised particle radius, and minimum and maximum deviations from that radius—see
text.
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FIG. 5. Computational mesh configurations for free-running beryllium shell collapse: (a) initial mesh con-
figuration for the three test collapses; (b)–(d) meshes after collapses for stopping radii of 50, 45, and 40 mm,
respectively.

4.3. Low-Velocity Projectile Impact

In this problem, an aluminium projectile strikes a semi-infinite aluminium target in vacuo
with an initial velocity of 400 ms−1. The stiffened gas EOS is used, together with material
properties as given in Table I. The problem has been previously investigated by Tyndall [40]
using a FCT-based scheme on a stationary Eulerian mesh and employing the volume-of-fluid
(VOF) method to track material interfaces.

4.3.1. Initialisation

Figure 6 shows the initial configuration of the problem. Target and projectile dimensions
are 2.20× 10−2× 3.80× 10−2 m and 0.50× 10−2× 1.20× 10−2 m, respectively. The
target and projectile are enclosed within a global computational domain 3.00× 10−2×
4.00× 10−2 m and are surrounded by void particles to enable unrestricted free surface
motion. As in the preceding problem, the void particles are modelled using the stiffened
gas EOS and are assigned the properties of aluminium.

Simulations are performed at five levels of mesh resolution in order to study the con-
vergence of the scheme. Initial particle spacings in thex- and y-directions are the same
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FIG. 6. Computational domain for low-velocity impact simulation. Shown are a projectile with initial velocity
400 ms−1, and a semi-infinite aluminium target containing Lagrangian reference points 1–5 (see text).

at each level of resolution, i.e.,1x = 1y. Data for the five computations are given in
Table VI. Note that the tabulated number of particles includes the void particles. Rela-
tive execution times, calculated from the average of three runs, are included to indicate
respective CPU cost. Also shown is the number of timesteps which are executed before
the computational mesh is fully reconstructed,Nrecon (see Section 3.1). Since the size of
the stable timestep decreases with increased mesh resolution, distorton of the computa-
tional mesh, per timestep, lessens for increasing resolution, and hence the maximum value
of Nrecon that can be safely employed increases as the mesh is refined. IncreasingNrecon

reduces the CPU usage per timestep; hence the quoted execution times are an indication
of the relative expense of each level of refinement when executed under conditions of best
practice.

The problem is executed to an elapsed time of 3.0µs after initialisation and a CFL number
of 0.3 is used throughout. Actual computation time for the coarsest mesh (4800 particles)
is approximately 210 s on a Pentium III 450-MHz processor.

TABLE VI

Particle Distributions, Mesh Reconstruction Details,

and Relative Execution Times for the Low-Velocity Pro-

jectile Impact Simulation

Number of Relative execution
particles Nrecon times

4800(60× 80) 1 1.00
19200(120× 160) 3 4.7
30000(150× 200) 5 8.1
76800(240× 320) 8 32.3

120000(300× 400) 10 64.1

a Five levels of mesh resolution are used to study scheme con-
vergence with initial mesh resolution identical in bothx- and y-
directions.Nrecon is the number of timesteps executed before the
computational mesh is fully reconstructed.
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FIG. 7. Energy time histories for low-velocity impact simulation, depicting kinetic energy and internal energy
for both the projectile and the target, plus system total energy. (a) Energy histories at differing levels of particle
refinement-numbers indicate total particles in calculation. (b) Comparison between the free-Lagrange solution
(solid line—76,800 particles, CFL= 0.3, Nrecon= 5) and that obtained using the AUTODYN fixed-connectivity
Lagrangian (dashed line) and SPH (dotted line) solvers.

4.3.2. Discussion

Convergence of the scheme under refinement is gauged by comparing the energy time
histories at each of the five resolution levels; see Fig. 7a. Shown are the internal and
kinetic energies for both the projectile and the target, plus the total energy of the system.
The minimum in the projectile internal energy, which occurs after approximately 1.35µs,
provides a convenient point of comparison. On refining from 4,800 to 19,200 particles,
the change in internal energy seen, at this minimum is just over twice the corresponding
change between the 19,200 and the 76,800 particle meshes. This is consistent with first-
order convergence. Visual inspection of the curves shows similar convergence behaviour
throughout the calculation. The change in energy levels between the two finest meshes is
typically less than 0.5%. Therefore, for the purpose of comparison with the other solvers,
the level of convergence obtained with 240× 320 particles is deemed adequate. Fig. 7b
compares the energy histories of the AUTODYN fixed-connectivity and SPH solvers with
that of the free-Lagrange solver. Agreement among the three techniques is generally close
and it is evident that out of the four schemes theVucalm–EPsolver most accurately conserves
total energy. The total energy differs from the initial kinetic energy of the projectile (the only
energy present att = 0) at the termination of the calculation (t = 3.0 µs) by 0.0052% for
theVucalm–EPsolver compared with 0.52% for the Euler, 1.11% for the fixed-connectivity,
and 0.69% for the SPH solver.

Figure 8 illustrates the wave structures generated in the projectile and target at 0.5,
1.0, 2.0, and 3.0µs after problem initialisation. At 0.5µs, shock waves, generated at the
impact plane, are seen to propagate leftward, back into the projectile, and rightward into
the target. Since the impactors share common material properties, these waves are identical
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FIG. 8. Transient results from low-velocity impact at elapsed times of 0.5, 1.0, 2.0, and 3.0µs after initial
projectile impact (76,800 particles, CFL= 0.3, Nrecon= 5). Shown are the material interfaces and contours of total
x-wise stressσx with a contouring interval of 0.15× 106 kPa. Panels (a) to (d) show the solution from the scheme
in normal operation and (e) to (h) display the solution when piecewise-constant data reconstruction is used.

along the axis of symmetry. By 1.0µs, rarefaction waves, which originate from shock
reflection at the upper and lower free surfaces of the projectile, are about to meet at the
symmetry axis. The left-running shock wave has also reached the rear of the projectile
and has reflected as a rarefaction. The ability of the technique to model elastic–plastic
response is evident in the splitting of the right-running shock wave at this time. After
2.0µs, the two-wave family has matured and an elastic precursor wave and trailing plastic
shock have formed. The rarefaction returned from the rear of the projectile has now crossed
into the target, producing a region of high tensile stress in thex-direction (a maximum of
approximately−1.9× 106 kPa). At the final elapsed time of 3.0µs, wave structures have
reached the top and bottom of the target, and the plastic shock is beginning to weaken
due to the interaction with trailing rarefactions. Deformation of the impactors is visible
at the impact plane, and at the rear and top and bottom of the projectile. By performing
calculations in which the first derivatives of the primitive variables (ρ, u, v, p) and the stress
gradients (see (37)) within individual computational cells are set equal to zero, it can be
shown that the scheme benefits from linear data reconstruction. Figures 8e to 8h illustrate
the solution when such piecewise-constant data reconstruction is used. In this first-order
solution the wave structures are distinctly more diffuse than in the solution obtained using
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the MUSCL formed gradients. Calculation of the observed order of the scheme under mesh
refinement, via the evaluation of a grid convergence index (GCI), as advocated by Roache
[29], has also indicated local convergence which was never below order 1.4 [17] for this
problem.

A consideration of the evolution of this simulation uncovers a limitation in the free-
Lagrange solver as currently configured. When two materials come into contact, the solver
considers them to be merged with infinite friction. In practice, for such a low-velocity impact,
this is physically unrealistic since no tensile force would exist between the projectile and
target in thex-direction, i.e., the impactors would not become physically fused together.
Lagrangian slidelines or contact logic, used in traditional fixed-connectivity Lagrangian
solvers, would correctly model this. Note that in the calculations performed using the
AUTODYN fixed-connectivity solver, this feature was disabled in order to permit direct
comparison with the free-Lagrange results. Since our scheme calculates the direct and shear
stress,snnk andsttk , acting on each cell face, a number of physically more realistic material
models could, however, be incorporated in the future. For instance, if at material interfaces,
sttk was set to zero andsnnk was limited to negative values (positive directed out of cell) in the
deviatoric operator, andp∗was limited to positive values in the hydrodynamic operator, then
this would result in a zero friction interface unable to support tension. More challenging,
however, would be to enable such interfaces to separate, as this would require the creation
of void particles at the interface as separation occurred. Similar considerations would be
required to model fracture and spallation. This issue will be the subject of future work.

In order to further compare the solution obtained using the free-Lagrange solver with both
the AUTODYN-2D fixed-connectivity and the SPH solver, five Lagrangian reference points
are defined along the symmetry axis within the target (Fig. 6). Point 1 is initially 1.8125 mm
from the impact plane, and the point spacing is 3.6250 mm. Figure 9 shows the time histories
of x-wise velocity, pressure, density, and total stress in thex-direction, recorded at these
points, for the free-Lagrange and AUTODYN fixed-connectivity solvers. The arrival times
and amplitudes of the various wave systems are generally in good agreement at all points.
Shock resolution is comparable, yet there is some disagreement in the values of pressure
(2.4%) and density (2.1%) reached behind the first shock as recorded at point 1. This
also has an impact (1.6%) on the totalx-wise stress attained sinceσx = −p+ sx. It is
suspected that this is caused by slight differences in the EOS used in the two solvers for
this problem. The Mie–Gr¨uneisen EOS, utilising a linear shock Hugoniot as the reference
curve, was used in the AUTODYN solver, while the stiffened gas EOS was used in the
free-Lagrange solver. The evolution of the right-running composite shock wave is clearly
revealed in the time histories. At point 1, only a single incident shock is seen. At point 2,
the shock front shows a break in slope, which is the first indication of shock splitting. At
points 3 to 5 the elastic and plastic waves are distinct, with the elastic precursor increasingly
separated from the plastic shock. Note that both the elastic and plastic waves remain steep
and well resolved in the free-Lagrange calculation, while the fixed-connectivity solver
suffers some diffusion and loss of wave steepness as the wave system propagates from points
1 to 5.

Figure 10 shows a similar comparison for the AUTODYN SPH and free-Lagrange solvers.
Again the two techniques show good agreement for the arrival times and amplitudes of the
right-running compression wave and the reflected rarefaction. As one may expect, the SPH
solution is considerably more diffuse.
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FIG. 9. Time histories for low-velocity impact simulation, recorded at Lagrangian reference points 1 to 5 within
the target (see Fig. 6). Solid line is solution obtained using the free-Lagrange technique (76,800 particles, CFL=
0.3, Nrecon= 5); dashed line depicts solution obtained using the AUTODYN fixed-connectivity Lagrangian solver.

4.4. High-Velocity Impact Simulations

For the final numerical examples, simulations of high-velocity (3.1 km−1) aluminium and
steel projectiles impacting a thin aluminium target are presented. Following the categorisa-
tion proposed by Swift [32] and Zukas [47], the impact velocity lies somewhere between
high and hypervelocity for the structural metals aluminium and steel. Thus we would ex-
pect to observe a highly localised fluid-like plastic response, since the pressures generated
by the impact will be orders of magnitude greater than the yield strength of the material.
The problem is dominated by inertia, is momentum driven, and would undoubtedly feature
material failure. Because of the large and highly localised deformation common in this type
of problem, simulations using conventional hydrocodes would normally be restricted to
Eulerian schemes or to SPH.
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FIG. 10. Time histories for low-velocity impact simulation, recorded at Lagrangian reference points 1 to 5
within the target (see Fig. 6). Solid line is solution obtained using the free-Lagrange technique (76,800 particles,
CFL= 0.3, Nrecon= 5); dashed line depicts solution obtained using the AUTODYN Lagrangian SPH solver.

4.4.1. Initialisation

The computational domain employed in this simulation is shown in Fig. 11. The initial
particle distribution, which completely fills the domain, is constructed from a number
of elements. A circumferentially symmetric distribution consisting of 4,505 particles is
used to discretise the circular projectile, which is 10 mm in diameter. Rectilinear particle
distributions are used elsewhere to form the rectangular target (2× 50 mm) and the majority
of the void region. The void region must be relatively large in order to provide sufficient
space to accommodate the anticipated large-scale deformation of the target and projectile.
The total number of particles initially within the domain is 36,275, 2,500 of which are
used in the target. Therefore, only approximately 1/5 of the total computational particles
constitute materials of interest. Fine distributions of void particles are used close to the
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FIG. 11. Domain configuration for the high-velocity impact of aluminium and steel projectiles on a thin
aluminium target. Dashed lines enclose regions of fine particle distribution. The aperture in the left boundary
admits void particles throughout the calculation.

projectile and target (indicated by the dashed lines in Fig. 11), and coarser distributions
are used in the remainder of the domain to help reduce computational cost. Throughout
the duration of the calculation, additional void particles are added through an aperture in
the left-hand boundary, at the impact velocity, to maintain the integrity of the computational
mesh. Again the stiffened gas EOS is used for both steel and aluminium (see Table I for
material properties). A CFL number of 0.3 is used in timestep control, and the mesh is
fully reconstructed every 3 timesteps. The solutions are compared with results from the
AUTODYN SPH solver. Since no void regions are required for the SPH solver, only a
discretisation of the target and projectile using SPH nodes is necessary.

4.4.2. Discussion

Transient results to an elapsed time of 8.0µs from initial impact are shown in Fig. 12 for an
aluminium projectile striking an aluminium target. Figures 12a–12h show the material ge-
ometry and pressure distributions predicted by the free-Lagrange solver, while Figs. 12i–12p
show node locations for the comparable AUTODYN SPH solution. As expected, the massive
compression generated by the impact produces extreme pressures. After 1.0µs (Fig. 12a),
a shock wave is seen running leftward into the projectile closely followed by the rarefaction
formed at the rear face of the target. Here all shocks are ‘overdriven’ and hence no split elas-
tic/plastic wave structures are observed. The pressure at the centre of the projectile, behind
the leftward running shock, is recorded as 18.6× 106 kPa. Figure 13 shows part of the free-
Lagrange computational mesh in the vicinity of the projectile at 1.0µs. Even at this early
time, Lagrangian motion of the mesh, and the formation of ejecta from both the projectile
and target, is evident. Considerable deformation of both projectile and target is seen at 2.0µs
(Fig. 12b), with thin arms of ejecta released from the front face of the target. Reflection of
the focused wave structures at the rear face of the projectile, observable in Figs. 12b and
12c, produces a region of strong tension. A tensile pressure of−15.9× 106 kPa is noted in
the core of the wave structure. With a more realistic material model, failure by spallation
would be expected here. By 4.0µs, the majority of this wave has reflected as a compression
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FIG. 12. Transient results illustrating material deformation and wave structures for the high-velocity impact
of a circular aluminum projectile on an aluminium target. (a)–(h) free-Lagrange solution—plotted are material
interfaces plus pressure contours with a contour interval of 1.0× 106 kPa. (i)–(p) SPH solution—black and grey
points are SPH nodes in the target and projectile, respectively.
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FIG. 13. Detail of free-Lagrange computational mesh for the high-velocity impact simulation, aluminium
projectile and target, at 1.0µs. Heavy lines are free surfaces.

front and is crossing the boundary from the projectile into the now highly deformed target.
Regions of ejecta have begun to break away from the front of the target and continue at
high velocity into the void regions. By 7.0µs, the projectile penetrates the target to such
an extent that the narrow remaining regions of the target present little resistance and the
target has only marginal influence on the momentum of the projectile. At later times, the
target material ligaments above and below the projectile are stretched and narrowed until
they are represented by only a single row of particles, at which stage the material typically
fails due to ‘numerical fragmentation.’ This occurs when the particles representing the lig-
ament move sufficiently far apart that, upon mesh reconstruction, adjacent particles cease
to be connected. Hence tensile forces can no longer be transferred through the ligament.
At this point fragmentation occurs and void particles begin to fill the gap. Such numerical
fragmentation is evident in the ejecta and the highly deformed target in Fig. 12h.

The SPH results (Figs. 12i–12p) show deformations at each time that agree closely
with the free-Lagrange solution. Slight differences develop as the calculation proceeds
due to the numerical characteristics of each of the two schemes. For instance, the SPH
method is well known for displaying an instability in tension. As a consequence, the region
subjected to large tensile forces, in the rear of the projectile, exhibits a ‘numerical fracture’
at 2.0µs, forming a void in the projectile. This void persists and continues to grow for
the remainder of the calculation. The presence of the void enlarges the projectile such
that it extends over a thickness of approximately 11.6 mm in thex-direction after 8.0µs
compared to approximately 6.8 mm, as illustrated in Fig. 12h. Despite these differences, the
final configurations are very similar for both schemes. The progress of the projectile through
the target is approximately 20.5 mm for the free-Lagrange solver, compared with 21.9 mm
obtained using SPH, while the widths of the holes produced in the target are approximately
19.2 mm and 20.5 mm, respectively.
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FIG. 14. Transient results illustrating material deformation and wave structures for the high-velocity impact of
a circular steel projectile on an aluminium target. (a)–(h) Free-Lagrange solution—plotted are material interfaces
plus pressure contours with a contour interval of 1.0× 106 kPa. (i)–(P) SPH solution—black and grey points are
SPH nodes in the target and projectile, respectively.
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A second high-velocity impact simulation was performed in which all parameters are un-
changed, with the exception that the projectile is constructed from steel. Transient solutions
for the simulation, performed using both free-Lagrange and SPH, are shown in Fig. 14.
Since the steel projectile is more massive and so possesses significantly more initial kinetic
energy, the compression on impact is more severe than for the aluminium/aluminium prob-
lem. At 1.0µs, a maximum pressure of approximately 27.9× 106 kPa is generated within
the projectile behind the left-running shock wave. Also, as there is now an impedance mis-
match at the interface between the projectile and target, the rarefaction produced at the
rear of the target is not fully transmitted into the projectile. Instead, a proportion of the
rarefaction is reflected back into the target as a weak expansion wave. This produces a
minimum pressure of−9.5× 106 kPa and total tensilex-wise stress of−9.9× 106 kPa
at the interface between the steel and aluminium. As in the aluminium/aluminium simu-
lation, the free-Lagrange scheme resolves a number of complex wave interactions. In the
steel/aluminium case, shock focussing within the projectile produces a high pressure ‘core’
which is apparent from 3.0µs onward, while the region of high tensile stress seen at the
rear of the projectile in the aluminium/aluminium case is now absent. A maximum pressure
of 27.2× 106 kPa (close to that produced upon initial impact) is recorded very near the rear
of the projectile. After 4.0µs (Fig. 14d), the projectile has made marginally more progress
through the target compared with the aluminium/aluminium solution. The deformation of
the projectile is also considerably less due to the increased yield stress of the steel. The
amount of ejecta formed is also significantly reduced. In the aluminium/aluminium sim-
ulation, roughly equal quantities of projectile and target material were ejected from the
front of the target. However, since the steel projectile is more resistant to deformation, no
steel is released to form ejecta. Furthermore, the projectile ‘plugs’ the target, retaining a
larger proportion of the target material on the front half of the projectile. This decreases
the amount of material available to form ligaments above and below the projectile. Con-
sequently, the ligaments are thinner and suffer earlier numerical fragmentation than in the
aluminium/aluminium simulations (see Fig. 14f).

Results obtained for the steel/aluminium problem using SPH are illustrated in Figs. 14i
to 14p. As in the aluminium/aluminium simulation, the SPH solution closely matches
the free-Lagrange results at early times. The solutions begin to differ noticeably at 2.0
to 3.0µs, when the SPH simulation undergoes numerical fracture at the projectile/target
interface as a result of large local tensile forces, forming a void between the projectile and
target. This is a numerical artifact similar to the fracture at the rear of the projectile in the
aluminium/aluminium case, the different location of the failure reflecting the changed stress
distribution. However, the absence of high tensile stress in the bulk of the steel projectile
means that it remains intact, and despite the formation of the void between the projectile and
target, the projectile deformation very closely matches that predicted by the free-Lagrange
solver. At 8.0µs, the progress of the projectile through the target agrees almost exactly
(approximately 22.8 mm for both methods) while the target hole is marginally larger for
SPH (16.4 mm as against 15.7 mm).

In both the free-Lagrange and SPH simulations presented here, ‘penetration’ problems,
as reported by Monaghan [24] and commonly observed in particle methods, do not appear to
be of concern. The authors have previously investigated the problem of mesh-induced pen-
etration errors at material interfaces in free-Lagrange simulations of gas-phase Richtmyer–
Meshkov instability [18]. Because material interfaces always lie along cell boundaries in
our scheme, the interfaces are typically slightly wrinkled at the length scale of the mesh
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pitch. If the interface is unstable, then such wrinkles introduce high-wavenumber perturba-
tions to the interface, which can grow to contaminate the solution. In [18] we introduced
a simple interface smoothing algorithm to damp out such perturbations. However, in the
present work the smoothing algorithm was found to be unnecessary and has not been used.
Although the presence of material strength may be expected to inhibit the growth of inter-
face instabilities, we also repeated several cases without material strength and found that
the interfaces remained well behaved. It is the authors’ opinion that in the simulations pre-
sented here, particularly the high-velocity impact, penetration problems are not observed
at material interfaces either because the interface is not particularly unstable or because the
time scale of the simulation is much shorter than the development time of any instability.

5. CONCLUDING REMARKS

We have presented a conservative, two-dimensional numerical scheme which models
elastic–perfectly plastic solids using planar geometry, in the Lagrangian reference frame.
By decomposing the total stress tensor into a hydrostatic pressure and deviatoric stress com-
ponent, the governing equations can be solved sequentially in time using a time-operator
split technique. A hydrodynamic operator, based on a second-order, finite-volume Godunov
method is used to advance the conserved variables to an intermediate time level. Next, a sep-
arate deviatoric operator calculates a new stress state, based on these intermediate values, in
order to provide a final conservative update. Since the scheme is fully Lagrangian, material
interfaces are sharply resolved at all times and multimaterial problems can be represented
easily-no additional algorithms are required to track material interfaces. Riemann prob-
lems, formed at the boundaries between individual computational cells, are solved using an
approximate two-shock solver to obtain Godunov fluxes, and materials are characterised
solely by a linear approximation to the shock Hugoniot and the local sound speed. There-
fore, a broad range of materials can be simulated including fluids (the techniques discussed
in this paper have previously been employed to simulate the collapse of air cavities in water
[3]) and condensed materials. In high-distortion calculations, the tangling of conventional
fixed-connectivity Lagrangian meshes is avoided by utilising the free-Lagrange method.
All variables are considered to be ‘cell-centred,’ being stored at computational particles
which are the only permanent feature of a calculation.

To illustrate the characteristics of the scheme, a variety of numerical examples were
presented. The first simulated the collapse of a cylindrical elastic–plastic shell. For a range
of moderately severe collapses the scheme maintained a high degree of circumferential
symmetry and reproduced an analytical stopping radius, obtained from an incompressible
model, consistently within 1%. Simulations of the shell collapse also agreed closely with
those performed using a conventional fixed-connectivity solver. The shock-capturing prop-
erties of the scheme were investigated and compared with those of a fixed-connectivity
and SPH solver by simulating a low-velocity impact problem. The scheme was found to
diffuse shock waves less than the other solvers and to converge at first-order or better under
mesh refinement. By simulating a high-velocity impact, it was also demonstrated that the
scheme is capable of computing arbitrarily large material deformations. The computational
cost of the method is found to be significantly more than that of fixed-connectivity and
SPH solvers. The computational efficiency of the technique suffers somewhat due to the
necessity of using void particles in vacuum regions and to the requirement to perform
frequent mesh reconstructions.
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The authors believe, however, that the proposed technique provides a sound foundation
for more advanced material modelling and the incorporation of more realistic physics. By
avoiding the complexities of incorporating material strength within the Riemann problem,
behaviour such as work hardening can be easily included. For example, the constant yield
strength utilised in the definition of the yield condition can be made a function of the equiv-
alent strain recorded at individual particles. Such refinements will be the subject of future
work.

APPENDIX: THEORETICAL CYLINDRICAL COLLAPSE MODEL

In this section, the theoretical collapse of a spherical shell, as presented by Verney [41],
is reworked for the case of a cylindrical shell. The objective is to find an initial velocity
distribution necessary to symmetrically collapse a cylindrical shell such that all the initial
kinetic energy is dissipated through plastic work and the shell comes to rest at a final
‘stopping radius’ ofr ′0. The initial and transient configurations of the shell are illustrated in
Fig. A1.

A.1. Stresses for Cylinder Yield

Using the generalised Hooke’s law, and assuming the shell material is incompressible, the
state of stress in an elastic cylinder subjected to plane strain (εz = 0) can be expressed as

2σr − σθ − σz = 6Gεr

2σθ − σz− σr = −6Gεr (A1)

2σz− σr − σθ = 0,

whereσr , σθ , σz are the total stresses acting in the radial, circumferential, and longitudinal
directions, respectively,G is the shear modulus, andεr is the radial strain. To detect the
onset of plastic flow we can introduce the von Mises yield condition,

(σ1− σ2)
2+ (σ2− σ3)

2+ (σ3− σ1)
2 = 2Y2

0 . (A2)

FIG. A1. Initial and transient configuration of cylindrical shell collapse. Here,R1 andR0 are the initial outside
and inside radii, andr1(t) andr0(t) are the outside and inside radii during the collapse.
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Since at any point in the cylinder the radial, circumferential, and longitudinal directions are
also principal directions, this can be recast as

(σr − σθ )2+ (σθ − σz)
2+ (σz− σr )

2 = 2Y2
0 , (A3)

whereY0 is the yield stress in simple tension. It follows from the last expression in (A1) that

σz = σr + σθ
2

, (A4)

which upon substitution into the yield condition, (A3), yields (see Nadai [25])

σθ − σr = 2√
3

Y0. (A5)

Defining the hydrostatic pressure as the mean of the three stresses, we have

p = −1

3
(σr + σθ + σz), (A6)

or utilising (A4),

p = −1

2
(σr + σθ ). (A7)

Combining this pressure definition and the yield condition yields

σr = p− 1√
3

Y0 and σθ = p+ 1√
3

Y0, (A8)

which are the stresses required in the radial and circumferential directions to produce yield-
ing of the cylinder.

A.2. Plastic Work Done During Collapse

For cylindrical symmetry the Lagrangian governing equations may be reduced to one-
dimensional equations with a geometric source term,

dρ

dt
= −ρ

(
∂u

∂r
+ u

r

)
(conservation of mass) (A9)

ρ
du

dt
= ∂σr

∂r
− σθ − σr

r
(conservation of momentum) (A10)

ρ
d E

dt
= ∂u

∂r
σr + u

r
σθ (conservation of energy). (A11)

The assumption of incompressibility reduces the continuity equation still further:

∂u

∂r
= −u

r
. (A12)
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Substituting the stresses at yield defined by (A8), the equation for the conservation of energy
becomes, for plastic flow,

ρ
d E

dt
= p

(
∂u

∂r
+ u

r

)
− Y0√

3

(
∂u

∂r
− u

r

)
, (A13)

and with the further simplification of incompressibility,

ρ
d E

dt
= −2Y0u√

3r
. (A14)

For a cylinder of inside and outside radiir0(t) andr1(t), the rate of change of total internal
energy per unit lengthEtot is given by

d Etot

dt
=
∫ r1(t)

r0(t)
2πrρ

d E

dt
dr. (A15)

By assuming the collapse is incompressible,εr + εθ + εz = 0, and for plane strain,εr +
εθ = 0; therefore,

du

dr
+ u

r
= 0 (A16)

since

εr = du

dr
and εθ = u

r
. (A17)

Therefore, a velocity distribution through the shell which satisfies incompressibility can be
obtained by integrating (A16),

u = C

r
, (A18)

whereC is a constant of integration. Combining (A14), (A15) and (A18) yields

d Etot

dt
= − 4√

3
πY0C(t) ln

r1(t)

r0(t)
. (A19)

However, since

d Etot

dr0(t)
= r0(t)

C(t)

d Etot

dt
and

d Etot

dx
= R0

d Etot

dr0(t)
, (A20)

we have

d Etot

dx
= − 4√

3
πY0x R2

0 ln
r1(t)

r0(t)
, (A21)

where we definex = r0(t)/R0. Using the relationshipR2
1 − R2

0 = r 2
1(t)− r 2

0(t), whereR0

andR1 are the initial inside and outside radii, we can eliminater1(t) andr0(t) from (A21)
to yield

d Etot

dx
= − 2√

3
πY0x R2

0 ln

(
1+ 2α + α2

x2

)
, (A22)
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whereα = (R1− R0)/R0. Integrating,

1Etot = 2√
3
πY0R2

0 F(α, λ), (A23)

which is equivalent to the plastic work done during the collapse whereλ = r ′0/R0 and the
function F(α, λ) is given,

F(α, λ) =
∫ 1

λ

x ln

(
1+ 2α + α2

x2

)
dx. (A24)

Note that similar expressions can be obtained as a function of the final outside stopping
radiusr ′1,

1Etot = 2√
3
πY0R2

1 F(z, ξ). (A25)

where,

F(z, ξ) =
∫ 1

ξ

z ln

(
z2R2

1

R2
0 − R2

1 + z2R2
1

)
dz, ξ = r ′1/R1, z= r1(t)/R1 (A26)

A cylindrical shell with an initial outside radiusR1 and inside radiusR0 has an initial
kinetic energy per unit length given by,

KE = 1

2

∫ R1

R0

2πrρu2 dr (A27)

Usingu = C/r the initial kinetic energy per unit length can be written,

KE = πρC2 ln
R1

R0
(A28)

Since initiallyC = u0R0, whereu0 is the initial velocity at the shell inner face, the initial
kinetic energy per unit length is finally,

KE = πρu2
0R2

0 ln
R1

R0
(A29)

Equating the plastic work done during the collapse to the initial kinetic energy, and rear-
ranging foru0 yields,

u0 =
√

2Y0F(α, λ)√
3ρ ln(R1/R0)

(A30)

where the functionF(α, λ) requires numerical integration for the configuration of interest.
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